九年级数学上册21.3实际问题与一元二次方程第3课时几何图形与一元二次方程导学案(新人教版)
九年级数学上册21.3实际问题与一元二次方程第3课时几何图形与一元二次方程导学案(新人教版),实际问题与一元二次方程,莲山课件.
实际问题与一元二次方程(2)
教学目标
掌握建立数学模型以解决增长率与降低率问题。
重难点关键
1.重点:如何解决增长率与降低率问题。
2.难点与关 键:解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量。
教学过程
探究2 两年前生产 1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产 1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
分析:甲种药品成本的年平均下降额为 (5000-3000)÷2=1000(元)
乙种药品成本的年平均下降额为 (6000-3600)÷2=1200(元)
乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率
解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为 元,两年后甲种药品成本为 元,依题意得
5000(1-x)2=3000
解方程,得
答:甲种药品成本的年平均下降率约为22.5%.
算一算:乙种药品成本的年平均下降率是多少? 比较:两种药品成本的年平均下降率。
思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定 也较大吗 ?应怎样全面地比较对象的变化状况?
(经过计 算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.)
小结:类似地 这种增长率的问题在实际生活普遍存在,有一定的模式
若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(中增 长取+,降低取-)
二、巩固练习(列出方程)
1某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米?
2某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方 程为__________.
3公司2001年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.
4. 某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?
三、应用拓展
例2.某人将2000 元人民币按一年定期存入银行 ,到期后支取1000元用于购物,
九年级数学上册21.3实际问题与一元二次方程第3课时几何图形与一元二次方程教案(新人教版)
九年级数学上册21.3实际问题与一元二次方程第3课时几何图形与一元二次方程教案(新人教版),实际问题与一元二次方程,莲山课件.
剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为( ).
A. B.p C. D.
二、填空 题
1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______k g,第三年的产量为_______,三年总产量为_______.
2.某糖厂2002年食糖产量为at,如果在以后两年平均增长的 百分率为x,那么预计2004年的产量将是____ ____.
3. 我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后,2001年降价70%至a 元,则这种药品在1999年涨价前价格是_________.
九年级数学上册21.3实际问题与一元二次方程第3课时几何图形与一元二次方程学案(新人教版)
九年级数学上册21.3实际问题与一元二次方程第3课时几何图形与一元二次方程学案(新人教版),实际问题与一元二次方程,莲山课件.