2020-2021学年初二数学上册同步讲练:与三角形有关的角
2020-2021学年初二数学上册同步讲练:与三角形有关的角,初二数学同步讲练,与三角形有关的角,莲山课件.
2020-2021 学年初二数学上册同步讲练:全等三角形性质及判定讲练 一、知识点 1 全等三角形 (1)形状、大小相同的图形能够完全重合; (2)全等形:能够完全重合的两个图形叫做全等形; (3)全等三角形:能够完全重合的两个三角形叫做全等三角形; (4)平移、翻折、旋转前后的图形全等; (5)对应顶点:全等三角形中相互重合的顶点叫做对应顶点; (6)对应角:全等三角形中相互重合的角叫做对应角; (7)对应边:全等三角形中相互重合的边叫做对应边; (8)全等表示方法:用“ ”表示,读作“全等于”(注意:记两个三角形全等时,把表示对应顶点的字 母写在对应的位置上) (9)全等三角形的性质: ①全等三角形的对应边相等; ②全等三角形的对应角相等; 2 三角形全等的判定 (1)若满足一个条件或两个条件均不能保证两个三角形一定全等; (2)三角形全等的判定: ABC ADE ≌ B 100 BAC 40 ∠AED ①三边对应相等的两个三角形全等;(“边边边”或“SSS”) ②两边和它们的夹角对应相等的两个三角形全等;(“边角边”或“SAS”) ③两角和它们的夹边对应相等的两个三角形全等;(“角边角”或“ASA”) ④两角和其中一角的对边对应相等的两个三角形全等;(“角角边”或“AAS”) ⑤斜边和一条直角边对应相等的两个直角三角形全等;(“斜边直角边”或“HL”) 二、考点点拨与训练 考点 1:全等三角形的性质 典例:(2020·古田县第十中学初一期中)如图,△ABC≌△AED,∠C=40°,∠EAC=30°,∠B=30°,则∠ D=____,∠EAD=______. 【答案】40° 110° 【解析】解:△ABC 中,∠C=40°,∠B=30° ∵△ABC≌△AED, ∴∠D=∠C=40°,∠E=∠B=30°, ∴∠EAD=180°−∠D−∠E=110°, 故答案为:40°,110°. 方法或规律点拨 本题用考查知识点为:全等三角形的性质及对应角的找法.书写全等时应注意各对应顶点应在同一位置, 也可根据此点来找全等三角形的对应关系.在计算角的度数的时候各角的度数应整理到一个三角形中. 巩固练习 1.(2020·广东省初三一模)如图, , , ,则 ( )180 58 72 50 1 50 A.70° B.45° C.40° D.50° 【答案】C 【解析】解:∵△ABC≌△ADE, ∴∠BAC=∠DAE=40°,∠B=∠D=100°, ∴∠AED=180°−40°−100°=40°, 故选:C. 2.(2020·南通市八一中学初一月考)下列说法:①全等图形的形状相同、大小相等;②三边对应相等的两 个三角形全等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( ) A.①②④ B.①③④ C.②③④ D.①②③④ 【答案】D 【解析】由全等三角形的概念可知:全等的图形是完全重合的,所以①全等图形的形状相同、大小相等是 正确的;重合则对应边、对应角是相等的,周长与面积也分别相等,所以①②③④都正确的. 故选:D. 3.(2018·上海初一期末)如图,已知两个三角形全等,那么∠1 的度数是( ) A.72°; B.60°; C.58°; D.50°. 【答案】D 【解析】根据三角形内角和可知,第一个三角形的第三个角的度数为 , 由全等三角形的性质可知, , 故选:D. 4.(2020·上海初三二模)在平面直角坐标系 xOy 中,点 A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC 与△EFB 全等,那么点 F 的坐标可以是( ) A.(6,0) B.(4,0) C.(4.﹣2) D.(4,﹣3) 【答案】D 【解析】解:如图所示:△ABC 与△EFB 全等,点 F 的坐标可以是:(4,﹣3). 故选:D. 5.(2020·偃师市实验中学初二月考)已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB= 度. 【答案】120 【解析】解:∵△OAD≌△OBC, ∴∠D=∠C=25°, ∴∠CAE=∠O+∠D=95°, ∴∠AEB=∠C+∠CAE=25°+95°=120°. 6.(2020·江苏省初二期末)如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC 的度数为 . 【答案】130° 【解析】∵△ABD≌△CBD,AB AC AD AE BD CE 3 1 2 AB=AC AD=AE BD=CE ∴∠C=∠A=80°, ∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°. 故答案为 130°. 考点 2:应用“SSS”判断三角形全等 典例:(2020·全国初一课时练习)如图,已知 , , ,求证: . 【答案】证明见解析. 【解析】 在△ABD 和△ACE 中, , ∴△ABD≌△ACE, ∴∠BAD=∠1,∠ABD=∠2, ∵∠3=∠BAD+∠ABD, ∴∠3=∠1+∠2. 方法或规律点拨 本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键. 巩固练习 1.(2020·南通市八一中学初一月考)如图,Rt△ABC,∠C=90°,AD 平分∠CAB,DE⊥AB 于 E,则下列 结论中不正确的是( )A.BD+ED=BC B.DE 平分∠ADB C.AD 平分∠EDC D.ED+AC>AD 【答案】B 【解析】CD=DE, ∴BD+DE=BD+CD=BC; 又有 AD=AD, 可证△AED≌△ACD ∴∠ADE=∠ADC 即 AD 平分∠EDC; 在△ACD 中,CD+AC>AD 所以 ED+AC>AD. 综上只有 B 选项无法证明,B 要成立除非∠B=30∘,题干没有此条件,B 错误, 故选 B. 2.(2018·内蒙古自治区初二期末)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB 的 依据是( ) A.SAS B.AAS C.ASA D.SSS 【答案】D 【解析】解:根据作法可知:OC=O′C′,OD=O′D′,DC=D′C′ ∴△OCD≌△O′C′D′(SSS) ∴∠COD=∠C′O′D′ ∴∠AOB=∠A′O′B′ 故选 D. 3.(2020·偃师市实验中学初二月考)用尺规作图作已知角∠AOB 的平分线 OC,其根据是构造两个三角形 全等,它所用到的识别方法是( ) A.SAS B.SSS C.ASA D.AAS 【答案】B 【解析】如图,是用尺规作图作出的∠AOB 的角平分线 OC,连接 DC、EC,OD OE DC EC OC OC 由作图过程可知:OD=OE,DC=EC, ∴在△ODC 和△OEC 中 , ∴△ODC≌△OEC(SSS). 故选 B. 4.(2018·内蒙古自治区初二期末)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB 的 依据是( ) A.SAS B.AAS C.ASA D.SSS 【答案】D 【解析】解:根据作法可知:OC=O′C′,OD=O′D′,DC=D′C′ ∴△OCD≌△O′C′D′(SSS) ∴∠COD=∠C′O′D′ ∴∠AOB=∠A′O′B′ 故选 D. 5.(2020·云南省初三二模)有一个平分角的仪器如图所示,其中 AB=AD,BC=DC.求证:AC 平分∠BAD.AB AD BC DC AC AC AC DB AB DC EB EC ABC DCB AC DB AB DC BC CB ìï = ïïïí = ïïï = ïî △ABC DCB SSS ≌△ ( ) ACB DBC ECB EBC EB EC AC BD AD BC AD BC , , , O O OE AB E AE BE 【答案】见解析 【解析】证明:在 ABC 和 ADC 中, ∴ ABC≌ ADC(SSS) ∴∠BAC=∠DAC, ∴AC 平分∠BAD. 6.(2020·湖北省初三其他)如图, , ,求证: . 【答案】见解析 【解析】证明:在 与 中, , ∴ ; ∴ , ∴ , ∴ . 7.(2020·江苏省初三一模)已知:如图, 相交于点 ,过点 作 , 垂足为 .求证: . 【答案】见解析 【解析】证明:在△ABC 与△BAD 中,AC BD BC AD AB BA OA OC EA EC OE OE ∴△ABC≌△BAD(SSS), ∴∠ABC=∠BAC, ∴AO=BO, 又∵OE⊥AB, ∴AE=BE. 8.(2020·全国初一课时练习)如图,已知线段 AB,CD 相交于点 O,AD,CB 的延长线交于点 E,OA=OC,EA=EC, (1)试说明:∠A=∠C; (2)在(1)的解答过程中,需要作辅助线,它的意图是什么? 【答案】(1)见解析;(2)构造全等三角形. 【解析】(1)如图,连接 OE. 在△EAO 和△ECO 中, 所以△EAO≌△ECO(SSS). 所以∠A=∠C(全等三角形的对应角相等). (2) 在(1)的解答过程中,需要作辅助线,它的意图是构造全等三角形.EA FB EA FB AB CD // , , E F A D 40 , 80 E OAB OCD OA OB OC OD OA OC AOB COD , , , 40 AC BD , M OM AC BD AMB 40 OM BOC MO BMC 考点 3:应用“SAS”判断三角形全等 典例:(2020·江苏省中考真题)已知:如图,点 A、B、C、D 在一条直线上, . (1)求证: ; (2)若 ,求 的度数. 【答案】(1)见解析;(2)60° 【解析】解:(1)∵AE∥BF, ∴∠A=∠DBF, ∵AB=CD, ∴AB+BC=CD+BC,即 AC=BD, 又∵AE=BF, ∴△ACE≌△BDF(SAS), ∴∠E=∠F; (2)∵△ACE≌△BDF, ∴∠D=∠ACE=80°, ∵∠A=40°, ∴∠E=180°-∠A-∠ACE=60°. 方法或规律点拨 本题考查了全等三角形的判定和性质和三角形内角和,解题的关键是找出三角形全等的条件. 巩固练习 1.(2019·广东省深圳外国语学校初一期末)如图,在 和 中, ,连接 交于点 ,连接 .下列结论: ① ;② ;③ 平分 ;④ 平分 .其中正确的个数为( ). AOB COD 40 AOB AOD COD AOD AOC BOD △AOC BOD OA OB AOC BOD OC OD AOC BOD SAS ≌ OCA ODB AC BD , OAC OBD AMB OAC AOB OBD, AMB AOB 40 OG MC G OH MB H OGC OHD 90 OCG ODH OCA ODB OGC OHD OC OD OCG ODH AAS ≌ OG OH MO BMC A.4 B.3 C.2 D.1 【答案】B 【解析】解:∵ , ∴ , 即 , 在 和 中, , ∴ , ∴ ,①正确; ∴ , 由三角形的外角性质得: ∴ °,②正确; 作 于 , 于 ,如图所示: 则 °, 在 和 中, , ∴ , ∴ , ∴ 平分 ,④正确; 正确的个数有 3 个; 故选:B. 2.(2020·山东初二期末)如图,AB∥CD,CE∥BF,A、 E、F、D 在一直线上,BC 与 AD 交于点 O,且 OE=OF,则图中有全等三角形的对数为( )A.2 B.3 C.4 D.5 【答案】B 【解析】解:①∵CE∥BF, ∴∠OEC=∠OFB, 又∵OE=OF,∠COE=∠BOF, ∴△OCE≌△OBF, ∴OC=OB,CE=BF; ②∵AB∥CD, ∴∠ABO=∠DCO,∠AOB=∠COD, 又∵OB=OC, ∴△AOB≌△DOC; ③∵AB∥CD,CE∥BF, ∴∠D=∠A,∠CED=∠COD, 又∵CE=BF, ∴△CDE≌△BAF. 故选 B. 3.(2020·济南市长清区实验中学初一期中)如图,点 E、F 在 BC 上,AB=CD,BE=CF,∠B=∠C,AF 与 DE 交于点 O.求证:∠A=∠D. 【答案】见详解 【解析】证明:∵BE=CF, ∴BE+EF=CF+EF,AB CD B C BF CE AC BC DC EC AC BC DC EC AE BD F AE BD AFD AC BC DC EC AC BC DC EC AE BD ∴BF=CE, 在△ABF 和△DCE 中 , ∴△ABF≌△DCE(SAS), ∴∠A=∠D. 4.(2020·江苏中考真题)如图, , , . , 与 交于点 . (1)求证: ; (2)求 的度数. 【答案】(1)见解析(2)90° 【解析】(1)∵ , , ∴∠ACB=∠ECD=90° ∴∠ACB+∠BCE=∠ECD+∠BCE 即∠ACE=∠BCD 又 . ∴△ACE≌△BCD ∴ (2)∵△ACE≌△BCD ∴∠A=∠B 设 AE 与 BC 交于 O 点, ∴∠AOC=∠BOF ∴∠A+∠AOC+∠ACO=∠B+∠BOF+∠BFO=180° ∴∠BFO=∠ACO=90°AFD AB CD / / AB CD BE CF ABF DCE AF DE // = = AB CD B C BF CE 故 =180°-∠BFO=90°. 5.(2020·江苏中考真题)如图,已知 , , . 求证:(1) ; (2) . 【答案】(1)证明见详解;(2)证明见解析. 【解析】证明:(1)∵AB∥CD, ∴∠B=∠C, ∵BE=CF, ∴BE-EF=CF-EF, 即 BF=CE, 在△ABF 和△DCE 中, ∴△ABF≌△DCE(SAS); (2)∵△ABF≌△DCE, ∴∠AFB=∠DEC, ∴∠AFE=∠DEF, ∴AF∥DE.. BAF G AFB GFC FB FC , , cm cm cm s/ t t 6.(2020·重庆初三)如图,AB∥CD,AD 与 BC 相交于点 E,AF 平分∠BAD,交 BC 于点 F,交 CD 的延 长线于点 G. (1)若∠G=29°,求∠ADC 的度数; (2)若点 F 是 BC 的中点,求证:AB=AD+CD. 【答案】(1)58°;(2)详见解析 【解析】证明:(1)∵AB∥CD,∴ ∠BAG=∠G, ∠BAD=∠ADC. ∵AF 平分∠BAD,∴∠BAD=2∠BAG=2∠G. ∴∠ADC=∠BAD=2∠G . ∵∠G=29°,∴∠ADC=58°. (2)∵AF 平分∠BAD,∴∠BAG=∠DAG. ∵∠BAG=∠G, ∴∠DAG=∠G. ∴AD=GD. ∵点 F 是 BC 的中点,∴BF=CF. 在△ABF 和△GCF 中, ∵ ∴△ABF≌△GCF. ∴AB=GC. ∴AB=GD+CD=AD+CD. 7.(2020·福州四十中金山分校初二月考)如图(1),AB=4 ,AC⊥AB,BD⊥AB,AC=BD=3 .点 P 在线段 AB 上以 1 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运 动.它们运动的时间为 (s). (1)若点 Q 的运动速度与点 P 的运动速度相等,当 =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;x cm s/ x x t 1 1 t x 2 3 2 t x { AP BQ A B AC BP 3 4 t t xt 1 1 t x (2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q 的运动速度为 ,是否存在实数 ,使得△ACP 与△BPQ 全等?若存在,求出相应的 、 的值;若 不存在,请说明理由. 【答案】(1)全等,垂直,
2020-2021学年初二数学上册同步讲练:与三角形有关的线段
2020-2021学年初二数学上册同步讲练:与三角形有关的线段,初二数学同步讲练,与三角形有关的线段,莲山课件.
理由详见解析;(2)存在, 或 【解析】(1)当 t=1 时,AP= BQ=1, BP= AC=3, 又∠A=∠B= 90°, 在△ACP 和△BPQ 中, ∴△ACP≌△BPQ(SAS). ∴∠ACP=∠BPQ , ∴∠APC+∠BPQ=∠APC+∠ACP = 90*. ∴∠CPQ= 90°, 即线段 PC 与线段 PQ 垂直; (2)①若△ACP≌△BPQ, 则 AC= BP,AP= BQ, 解得 ; ②若△ACP≌△BQP,3 4 xt t t 2 3 2 t x 1 1 t x 2 3 2 t x 则 AC= BQ,AP= BP, 解得: 综上所述,存在 或 使得△ACP 与△BPQ 全等. 考点 4:应用“ASA” 或“AAS”判断三角形全等 典例:(2020·山东省初一期中)CD 是经过∠BCA 定点 C 的一条直线,CA=CB,E、F 分别是直线 CD 上两 点,且∠BEC=∠CFA=∠β. (1)若直线 CD 经过∠BCA 内部,且 E、F 在射线 CD 上, ①若∠BCA=90°,∠β=90°,例如左边图,则 BE CF,EF |BE – AF| (填“>”,“<”,“=”); ②若 0°<∠BCA<180°,且∠β+∠BCA=180°,例如中间图,①中的两个结论还成立吗?并说明理由; (2)如右边图,若直线 CD 经过∠BCA 外部,且∠β=∠BCA,请直接写出线段 EF、BE、AF 的数量关系(不 需要证明). 【答案】(1)①=,= ②两结论依然成立,证明见解析 (2)EF=BE+AF 【解析】(1)①∵∠BCA=90°,∠β=90° ∴∠FCA+∠BCF=90°,∠FCA+∠CAF=90° ∴∠BCF=∠CAF 又∵∠BEC=∠CFA,CA=CB ∴△BEC △CFA(AAS) ∴BE=CF,CE=AFEF CF CE BE AF EF CF CE BE AF A B C D CE DF A F AC FD AE FB ∴ ②在△FCA 中,∠CFA+∠FCA+∠CAF=180° 又∵∠BEC=∠CFA=∠β,∠β+∠BCA=180° ∴∠FCA+∠CAF=∠BCA ∵∠BCA=∠BCE+∠FCA ∴∠CAF=∠BCE ∵CA=CB ∴△BEC △CFA(AAS) ∴BE=CF,CE=AF ∴ (2)在△BEC 中,∠B+∠BEC+∠BCE=180° 又∵∠BEC=∠CFA=∠β,∠BCE+∠BCA+∠ACF=180°,∠β=∠BCA ∴∠B=∠ACF ∵CA=CB ∴△BEC △CFA(AAS) ∴BE=CF,CE=AF EF=EC+CF=AF+BE 方法或规律点拨 本题考查全等三角形证明以及性质的应用,并结合一定的探究思路,按照题目指引利用 AAS 判别定理解答 即可. 巩固练习 1.(2020·江苏初三二模)如图,点 , , , 在同一条直线上, , , . 求证: .CE DF ∥ ACE D A F AC FD △ACE FDB ≌△ AE FB AB CD AB CD BF AC / / , , = F DE AC , E AE CF AB CD / / A C BF AC DE AC , BFA DEC 90 ABF △CDE BFA EDC A C AB CD △ABF CDE AAS △ AF CE ∴ AE CF = 【答案】证明见解析. 【解析】证明: , . 又 , , , . 2.(2020·湖北省初三月考)如图, 于点 于点 , 求证: . 【答案】详见解析 【解析】证明: , , , , 在 和 中, , , , . 3.(2020·重庆市育才中学初二期末)如图△ABC 中,点 E 在 AB 上,连接 CE,满足 AC=CE,线段 CD 交 AB 于 F,连接 AD. (1)若∠DAF=∠BCF,∠ACD=∠BCE,求证:AD=BE; (2)若∠ACD=24°,EF=CF,求∠BAC 的度数. DAF BCF AFD CFB D B AC CE ACD BCE ACD ECB AAS ( ) AD BE AC CE CAE AEC EF CF ECF AEC ACD 24 ACE 1 (180 24 ) 52 3 EAC 【答案】(1)证明见解析;(2)52°. 【解析】解:(1) , , , 又 , , , ; (2) , , , , 又 , 中, . 4.(2020·浙江初一月考)△ADE 中,AE=AD,∠EAD=90°. (1)如图(1),若 EC、DB 分别平分∠AED、∠ADE,交 AD、AE 于点 C、B,连接 BC.请你判断 AB、 AC 是否相等,并说明理由; (2)△ADE 的位置保持不变,将(1)中的△ABC 绕点 A 逆时针旋转至图(2)的位置,CD、BE 相交于 O, 请你判断线段 BE 与 CD 的位置关系及数量关系,并说明理由; (3)在(2)的条件下,若 CD=6,试求四边形 CEDB 的面积. 【答案】(1)理由见解析;(2)理由见解析;(3)18.1 2 1 2 AB AC EAB DAC AE AD 1 2 1 2 2 CD m ABC A m D E ADB 60 o AEC 60 BD CE DE (1)AB=AC. 理由如下: ∵EC、DB 分别平分∠AED、∠ADE ∴∠AEC= ∠AED,∠ADB= ∠ADE ∵∠AED=∠ADE ∴∠AEC=∠ADB 在△AEC 和△ADB 中, ∠AEC=∠ADB,AE=AD,∠A=∠A ∴△AEC≌△ADB ∴AB=AC; (2)BE=CD 且 BE⊥CD. 理由如下: ∵∠EAD=∠BAC ∴∠EAB=∠DAC 在△AEB 和△ADC 中, , ∴△AEB≌△ADC(SAS) ∴EB=CD ∴∠AEB=∠ADC ∵∠AEB+∠DEB+∠ADE=90° ∴∠ADC+∠DEB+∠ADE=90° ∵∠ADC+∠DEB+∠ADE+∠DOE=180° ∴∠DOE=90° ∴BE⊥CD; (3)四边形 CEDB 的面积= ×BE×CD= =18. 5.(2020·山东省初二期中)(1)如图①,直线 经过正三角形 的顶点 ,在直线 上取两点 、 , 使得 , ,求证: .m A ADB 120 o AEC 120 BD CE DE CE BD DE ABC BAC 60 AB CA DAB CAE , 120 ECA CAE 120 DAB ECA DAB ECA ADB AEC 60 DAB ECA AB CA DAB ECA AAS AD CE BD AE BD CE AE AD DE CE BD DE ABC BAC 60 AB CA DAB CAE , 60 AEC 120 ECA CAE 60 DAB ECA DAB ECA (2)将(1)中的直线 绕着点 逆时针方向旋转一个角度到如图②的位置,并使 , ,通过观察或测量,猜想线段 , 与 之间满足的数量关系,并予以证明. 【答案】(1)证明见解析;(2) ,理由见解析. 【解析】(1)∵在正三角形 中, , ∴ 又∵ ∴ 在 和 中, ∴ ≌ ( ) ∴ , ∴ (2)猜想: 证明:∵在正三角形 中, ∴ ∵ ∴ ∴ 在 和 中ADB AEC 120 DAB ECA AB CA DAB ECA AAS AD CE BD AE CE BD AD AE DE { BF BF BC BE ∴ ≌ ( ) ∴ , ∴ 考点 5:应用“HL”判断三角形全等 典例:(2020·辽宁初三一模)如图,将两个全等的直角三角形 ABC 和 DBE 按图①方式摆放,其中∠ACB= ∠DEB=90°,∠A=∠D=30°,点 E 落在 AB 上,DE 所在直线交 AC 所在直线于点 F. (1)求证:AF+EF=DE. (2)若将图①中的△DBE 绕点 B 按顺时针方向旋转 α,且 0°<α<60°,其他条件不变,请在图②中画出旋转 后的图形,并直接写出(1)中的结论是否仍然成立. (3)若将图①中的△DBE 绕点 B 按顺时针方向旋转 β,且 60°<β<180°,其他条件不变,如图③.你认为(1)中 的结论还成立吗?若成立,请写出证明过程;若不成立,请写出 AF,EF 与 DE 之间的关系,并说明理由. 【答案】(1)证明见解析;(2)成立,理由见解析;(3)不成立,理由见解析; 【解析】(1)如图①所示,连接 BF, ∵BC=BE, 在 Rt△BCF 和 Rt△BEF 中 ∴Rt△BCF≌Rt△BEF(HL),{ BF BF BC BE { BF BF BC BE ∴EF=CF, ∴AF+EF=AC=DE; (2)如图②所示: 延长 DE 交 AC 与点 F,连接 BF, 在 Rt△BCF 和 Rt△BEF 中 ∴Rt△BCF≌Rt△BEF(HL), ∴EF=CF, ∴AF+EF=AC=DE; (3)如图③所示: 连接 BF, 在 Rt△BCF 和 Rt△BEF 中 ∴Rt△BCF≌Rt△BEF(HL), ∴EF=CF, ∴AF-FC=AC=DE, ∴AF-EF=DE. 方法或规律点拨BC CD AC AC = = BF CE AE BC DF BC , , HL Rt ABE Rt DCF ≌ AB DC A D B C AE DF BF CE 本题主要考查全等三角形的判定及性质,掌握全等三角形的判定及性质是解题的关键. 巩固练习 1.(2020·山东初二期中)如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2= A.40° B.50° C.60° D.75° 【答案】B 【解析】解:∵∠B=∠D=90° 在 Rt△ABC 和 Rt△ADC 中 , ∴Rt△ABC≌Rt△ADC(HL) ∴∠2=∠ACB=90°-∠1=50°. 故选 B. 2.(2020·甘肃靖远五中初二期中)如图, ,要根据“ ”证明 ,则还要添加一个条件是( ) A. B. C. D. 【答案】A 【解析】添加的条件是 AB=CD;理由如下: ∵AE⊥BC,DF⊥BC, ∴∠CFD=∠AEB=90°, ∵ ,BE CF AB CD BE CE BC CE BA CF ∴ , 在 Rt△ABE 和 Rt△DCF 中, ∴Rt△ABE=R△DCF(HL) 所以 A 选项是正确的. 3.(2020·山西省初二期末)如图,在 Rt△ABC 中,∠ACB=90°,BC=5cm,在 AC 上取一点 E 使 EC=BC, 过点 E 作 EF⊥AC,连接 CF,使 CF=AB,若 EF=12cm,则 AE 的长为( ) A.5cm B.6cm C.7cm D.8cm 【答案】C 【解析】∵EF⊥AC, ∴∠CEF=90°, 在 Rt△ABC 和 Rt△FCE 中 , ∴Rt△ABC≌Rt△FCE(HL), ∴AC=FE=12cm, ∵EC=BC=5cm, ∴AE=AC-EC=12-5=7cm, 故选:C. 4.(2019·陕西省陕西师大附中初一期末)如图,在△ABC 中,AB=CB,∠ABC=90°,D 为 AB 延长线上 一点,点 E 在 BC 上,且 BE=BD,连接 AE、DE、DC.若∠CAE=30°,则∠BDC=_____., , BE BD AB BC 【答案】75° 【解析】解:延长 AE 交 DC 边于点 F,如图: ∵∠ABC=90°, ∴∠CBD=90°, 在 Rt△ABE 与 Rt△CBD 中, ∴Rt△ABE≌Rt△CBD(HL), ∴∠AEB=∠BDC,AB=BC, ∴∠BAC=∠ACB=45°, ∵∠AEB 为△AEC 的外角,∠CAE=30°, ∴∠AEB=∠ACB+∠CAE=45°+30°=75°, ∴∠BDC=75°. 故答案为:75°. 5.(2020·山西初三二模)如图所示,有两个长度相等的滑梯,左边滑梯 BC 的高 AC 与右边滑梯 EF 水平方 向的长度 DF 相等,两滑梯倾斜角∠ABC 和∠DFE 有什么关系?并说明理由。BC EF AC DF DB AC CB BC 【答案】∠ABC+∠DFE=90°,理由见解析. 【解析】解:∠ABC+∠DFE=90° 在 Rt△ABC 和 Rt△DEF 中, ∴Rt△ABC≌Rt△DEF ∴∠ABC=∠DEF 又∵∠DEF+∠DFE=90° ∴∠ABC+∠DFE=90° 6.(2020·云南初三一模)如图,∠A=∠D=90°,AC=DB,AC、DB 相交于点 O.求证:AB=CD. 【答案】见解析 【解析】证明:在 Rt△ABC 和 Rt△DCB 中, , ∴Rt△ABC≌Rt△DCB(HL), ∴AB=DC. 7.(2020·河南省实验中学初二月考)如图,DE⊥AB 于 E,DF⊥AC 于 F,若 BD=CD,BE=CF. (1)求证:AD 平分∠BAC. (2)写出 AB+AC 与 AE 之间的等量关系,并说明理由., , BD CD BE CF , , , EAD CAD AD AD ADE ADF 【答案】(1)详见解析;(2)AB+AC=2AE,理由详见解析. 【解析】证明:(1)∵DE⊥AB 于 E,DF⊥AC 于 F, ∴∠E=∠DFC=90°, ∴△BDE 与△CDE 均为直角三角形, ∵在 Rt△BDE 与 Rt△CDF 中, ∴Rt△BDE≌Rt△CDF, ∴DE=DF, ∴AD 平分∠BAC; (2)AB+AC=2AE. 理由:∵BE=CF,AD 平分∠BAC, ∴∠EAD=∠CAD, ∵∠E=∠AFD=90°, ∴∠ADE=∠ADF, 在△AED 与△AFD 中, ∴△AED≌△AFD, ∴AE=AF, ∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE. 8.(2019·湖北初二期中)如图,点 B、C、E、F 在同一直线上,BC=EF,AC⊥BC 于点 C,DF⊥EF 于点 F, AC=DF.求证:(1)△ABC≌△DEF ;(2)AB∥DE. 【答案】见解析. 【解析】解:(1)∵AC⊥BC,DF⊥EF ∴∠ACB=∠DFE=90° 又∵BC=EF AC=DF ∴△ABC≌△DEF (2)∵△ABC≌△DEF ∴∠B=∠DEF ∴AB∥DE(同位角相等,两直线平行)
2020-2021学年初二数学上册同步讲练:轴对称及画轴对称图讲练
2020-2021学年初二数学上册同步讲练:轴对称及画轴对称图讲练,初二数学同步讲练,抽对称及画轴对称图,莲山课件.