北师大版三年级语文上册第一单元提升练习题及答案
北师大版三年级语文上册第一单元提升练习题及答案,三年级语文上册试卷,莲山课件.
2020-2021 学年高一数学单元知识梳理:指数函数与对数函数 1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数式、对数的运算性 质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数 a 的不同取值 对函数的图象及性质的影响则是重中之重,要熟知 a 在(0,1)和(1,+∞)两个区间取值时,函数的单调性及图象特点. 3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以首先将 它们与零比较,分出正数、负数;再将正数与 1 比较,分出大于 1 还是小于 1;然后在 各类中两两相比较. 4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、 对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数 定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 5.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、 知图选式、图象变换以及用图象解题.函数图象形象地显示了函数的性质.在解方程或 不等式时,特别是非常规的方程或不等式,画出图象,利用数形结合能快速解决问题. 6.方程的解与函数的零点:方程 f(x)=0 有实数解⇔函数 y=f(x)有零点⇔函数 y=f(x) 的图象与 x 轴有交点. 7.零点判断法:如果函数 y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有 f(a)f(b)<0> f(c)=0,这个 c 也就是方程 f(x)=0 的解. 注意:由 f(a)f(b)<0> 的变号零点或不变号零点.若 f(a)f(b)>0,则 f(x)在(a,b)内可能有零点,也可能无零点. 8.二分法只能求出其中某一个零点的近似值,另外应注意初始区间的选择. 9.用函数建立数学模型解决实际问题的基本过程如下: 一、指数、对数函数的典型问题及求解策略 指数函数、对数函数的性质主要是指函数的定义域、值域、单调性等,其中单调性是高 考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以已学函数的单2 3 4 ln x x y x 2 2 3 4 3 4 0 ln ln 0, 0 x x x x y x x x 1 4 (0,1) (1,4] 0, 1 x x x x 2 f x x x ( ) 2 log (0,2] [0,2) [0,2] (0,2) 0 2 0 x x 0 2 x ) 4 1( ) 4 1( 调性为主,结合复合函数单调性的判断法则,在函数定义域内进行讨论. 1.求定义域 【典例 1】1.(2020·河南高三其模拟)函数 的定义域是( ) A.(0,1)∪(1,4] B.(0,4] C.(0,1) D.(0,1)∪[4,+∞) 【答案】A 【解析】 故选:A 2.(2020·湖南天心长郡中学高一月考)函数 的定义域是( ) A. B. C. D. 【答案】A 【解析】由题意可得, , 解得 .故选:A. 2.比较大小问题 比较几个数的大小是指数、对数函数的又一重要应用,其基本方法是:将两个需要比较 大小的实数看成某类函数的函数值,然后利用该类函数的单调性进行比较;有时也采用 搭桥法、图象法、特殊值法、作图法等方法. 【典例 2】若 0 A.3 y <3> x B.logx3 C.log4x < y) 4 1( ) 4 1( ) 4 1( 【答案】C 【解析】因为 0 对于 A,函数 y=3 x 在 R 上单调递增,故 3 x <3> y,错误. 对于 B,根据底数 a 对对数函数 y=logax 的影响:当 0
小图高”.因为 0 logy3,错误.
对于 C,函数 y=log4x 在(0,+∞)上单调递增,故 log4x 对于 D,函数 y= x 在 R 上单调递减,故 x > y,错误. 【典例 3】比较三个数 0.3 2,log20.3,2 0.3 的大小.
【解析】解法一:∵0<0> 2 <1> 2=1,log20.3 0.3 >2 0=1,∴log20.3<0> 2 <2> 0.3 . 解法二:作出函数 y=x 2,y=log2x,y=2 x 的大致图象,如图所示,画出直线 x=0.3, 根据直线与三个函数图象的交点位置,即可看出 log20.3<0> 2 <2> 0.3 . 3.与指数、对数函数相关的单调性问题 【典例 4】是否存在实数 a,使函数 f(x)=loga(ax2﹣x)在区间[2,4]上是增函数?若存在,求 出 a 的取值范围;若不存在,说明理由. 【解析】设 u(x)=ax2﹣x,显然二次函数 u 的对称轴为 x= 1 2?. ①当 a>1 时,要使函数 f(x)在[2,4]上为增函数,则 u(x)=ax2﹣x 在[2,4]上为增函数,10 x 3 10 x 3 10 x 3 故应有 { 12? ≤ 2 ?(2) = 4? − 2 > 0 ,解得 a>12 .综合可得,a>1. ② 当 0<a<1 时,要使函数 f(x)在[2,4]上为增函数, 则 u(x)=ax2﹣x 在[2,4]上为减函数, 应有 { 12? ≥ 4 ?(4) = 16? − 4 > 0 ,解得 a ∈∅ . 综上,a>1 时,函数 f(x)=loga(ax2﹣x)在区间[2,4]上为增函数. 二、函数的图象问题 对于给定的函数图象,要能从函数左右、上下的分布范围、变化趋势、对称性等方面研 究函数的定义域、值域、单调性、奇偶性、周期性等性质.注意图象与函数解析式中参 数的关系,能够通过变换画出函数的图象. 1.图象的变换 【典例 5】为了得到函数 y=lg 的图象,只需把函数 y=lg x的图象上所有的点( ) A.向左平移 3 个单位长度,再向上平移 1 个单位长度 B.向右平移 3 个单位长度,再向上平移 1 个单位长度 C.向左平移 3 个单位长度,再向下平移 1 个单位长度 D.向右平移 3 个单位长度,再向下平移 1 个单位长度 【答案】C 【解析】∵y=lg =lg (x+3)-1,∴只需将 y=lg x 的图象上所有的点向左平移 3 个单位长度,再向下平移 1 个单位长度,即可得到函数 y=lg 的图象. 2.根据函数解析式确定图象 【典例 6】已知 f(x)=a x-2,g(x)=loga|x|(a>0,且 a≠1),若 f(4)g(4)<0> g(x)在同一平面直角坐标系内的大致图象是( )x 3, 2 1 1 ( ) 1 4 2 x x f x 2 1 1 1 3 2 1 4 2 1 2 2 1 2 4 2 2 4 x x x x x x x f x x 3, 2 1 2 8 4 x 1 2 2 x x 1 f x 3 4 2 8 x x 3 f x 【答案】B 【解析】由 f(4)g(4)<0> 2 ·loga4<0> 单调递减. 三、等价转化思想的体现 一般来说,小题对指数函数、对数函数的考查,仅限于这两类函数本身的概念、图象与 性质.而解答题往往注重考查与这两类函数有关的复合函数的性质.这类题目的解题思 想是:通过换元转化成其他函数,或是将其他函数通过转化与化归,变成这两类函数来 处理. 【典例 7】(2020·吉化第一高级中学校高二期末(理))已知 ,求 的 最小值与最大值. 【解析】 , ∵ , ∴ . 则当 ,即 时, 有最小值 ;当 ,即 时, 有最大值 57. 四、函数零点与方程的解 根据函数零点的定义,函数 y=f(x)的零点就是方程 f(x)=0 的解,判断一个方程是否有零点,有几个零点,就是判断方程 f(x)=0 是否有解,有几个解.从图形上说,函数的 零点就是函数 y=f(x)的图象与 x 轴的交点的横坐标,函数零点、方程的解、函数图象与 x 轴交点的横坐标三者之间有着内在的本质联系,利用它们之间的关系,可以解决很多 函数、方程与不等式的问题.在高考中有许多问题涉及三者的相互转化,应引起我们的 重视. 【典例 8】关于 x 的方程 x+lg x=3,x+10 x=3 的解分别为 α,β,则 α+β 等于( ) A.6 B.5 C.4 D.3 【答案】D 【解析】将方程变形为 lg x=3-x 和 10 x=3-x.令 y1=lg x,y2=10 x,y3=3-x,在同一 平面直角坐标系中分别作出 y1=lg x,y2=10 x,y3=3-x 的图象,如图所示.这样方程 lg x=3-x 的解可以看成函数 y1=lg x 和 y3=3-x 的图象的交点 A 的横坐标,方程 10 x =3-x 的解可以看成函数 y2=10 x 和 y3=3-x 的图象交点 B 的横坐标.因为函数 y1=lg x 和 y2=10 x 互为反函数,所以 y1=lg x 和 y2=10 x 的图象关于直线 y=x 对称,由题意可 得出 A,B 两点也关于直线 y=x 对称,于是 A,B 两点的坐标分别为 A(α,β),B(β,α).而 A,B 两点都在直线 y=3-x 上,所以 β=3-α,所以 α+β=3. 【典例 9】(2018·福建厦门双十中学高三月考(理))已知函数 f(x)=x+2 x ,g(x)=x+ln x,h(x) =x- √? -1 的零点分别为 x1,x2,x3,则 x1,x2,x3的大小关系是________(由小到大). 【答案】x1 【解析】令 y1=2 x ,y2=ln x,y3=- √? -1,y=-x, ∵函数 f(x)=x+2 x ,g(x)=x+ln x,h(x)=x- √? -1 的零点分别为 x1,x2,x3,即函数 y1=2 x ,y2=ln x,y3=- √? -1 与函数 y=-x 交点的横坐标分别为 x1,x2,x3. 分别作出函数的图象,结合图象可得 x1 五、函数模型的应用 针对一个实际问题,我们应该选择恰当的函数模型来刻画.这当然需要我们深刻理解已 学函数的图象和性质,熟练掌握已学函数的特点,并对一些重要的函数模型要有清晰的 认识.对于一个具体的应用题,原题中的数量间的关系,一般是以文字和符号的形式给 出,也有的是以图象的形式给出,此时我们要分析数量变化的特点和规律,选择较为接 近的函数模型进行模拟,从而解决一些实际问题或预测一些结果. 【典例 10】为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测 量最大积雪深度 x 与当年灌溉面积 y.现有连续 10 年的实测资料,如表所示. (1)描点画出灌溉面积随积雪深度变化的图象; a b a b 45.8 24.0 21.1 10.4 2 e (2)建立一个能基本反映灌溉面积变化的函数模型,并画出图象; (3)根据所建立的函数模型,估计若今年最大积雪深度为 25 cm,则可以灌溉土地多少公 顷? 【解析】(1)描点、作图,如图甲所示: (2)从图甲中可以看到,数据点大致落在一条直线附近,由此,我们假设灌溉面积 y 与最 大积雪深度 x 满足一次函数模型 y=a+bx(a,b 为常数且 b≠0).取其中的两组数据 (10.4,21.1),(24.0,45.8),代入 y=a+bx,得 ,用计算器可得 a≈2.2,b≈1.8. 这样,得到一个函数模型: y=2.2+1.8x,作出函数图象如图乙,可以发现,这个函数模型与已知数据的拟合程度 较好,这说明它能较好地反映最大积雪深度与灌溉面积的关系. (3)由(2)得到的函数模型为 y=2.2+1.8x,则由 y=2.2+1.8×25,求得 y=47.2,即当最 大积雪深度为 25 cm 时,可以灌溉土地约为 47.2 公顷. 【典例 11】载人飞船是通过火箭发射的.已知某型号火箭的起飞重量 M t 是箭体(包括 搭载的飞行器)的重量 m t 和燃料重量 x t 之和.在不考虑空气阻力的条件下,假设火箭 的最大速度 y km/s 关于 x 的函数关系为 y=k[ln (m+x)-ln ( m)]+4ln 2(其中 k≠0,ln x 是以 e 为底 x 的对数).当燃料重量为( -1)m t 时,该火箭的最大速度为 4 km/s. (1)求此型号火箭的最大速度 y km/s 与燃料重量 x t 之间的函数解析式; (2)若此型号火箭的起飞重量是 479.8 t,则应装载多少吨燃料(精确到 0.1 t,取 e=2.718) 才能使火箭的最大飞行速度达到 8 km/s,顺利地把飞船发送到预定的椭圆轨道?e 2 2 m m x 479.8 x 479.8 【解析】(1)由题意,得 4=k{ln [m+( -1)m]-ln ( m)}+4ln 2,解得 k=8, 所以 y=8[ln (m+x)-ln ( m)]+4ln 2=8ln . (2)由已知,得 M=m+x=479.8,则 m=479.8-x. 将 y=8 代入(1)中所得式中,得 8=8ln ,解得 x≈303.3. 答:应装载约 303.3 t 燃料,才能使火箭的最大飞行速度达到 8 km/s,顺利地把飞船送到 预定的椭圆轨道. 阅读全文
标签:
点评:
+1 0
分享:
文档格式:doc
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如果有侵权请立即联系:3215808601@qq.com,我们立即下架或删除。
你可能关注的文档
- 高中数学必修一第二章基本初等函数(Ⅰ)单元测试(含答案)
- 高一数学必修一集合与函数的概念单元测试(含答案)
- 2019学年人教版高一(上)数学 空间几何体 单元质量检测题(含解析)
- 2019学年人教版高一(上)数学 点、直线、平面之间的关系 单元质量检测题(含解析)
- 2019学年人教版高一(上)数学 直线与方程 单元质量检测题(含解析)
- 2019学年人教版高一(上)数学 圆与方程 单元质量检测题(含解析)
- 2019学年人教版高一(上)数学 模块综合 单元质量检测题 (含解析)
- 2019学年人教版高一(上)数学 立体几何 测试卷
- 2019学年安徽淮南第一中学高一(上)数学单元测试卷(含解析)
- 2019学年人教版高一(上)数学 空间向量 单元测试卷
- 2019学年高一(上)数学 第二章 基本初等函数 单元测试卷(含答案)
- 2019学年安徽淮南第一中学高一(上)数学函数测试卷(含答案)
- 2019学年安徽淮北市第一中学高一(上)数学单元测试卷(含解析)
- 2019学年浙江宁波市镇海中学高一(上)数学 三角函数 单元测试卷(含答案)
- 2019学年高一(上)数学 第一单元 集合与函数概念 单元测试B卷(含答案)
点击排行
- 高一数学上册第一章集合单元测试题(附答案)
- 2014高一数学必修4第二章平面向量单元测试题(有答案)
- 2014高一数学必修3第一章算法初步单元测试题(含答案)
- 2015年高中数学必修三同步模块综合检测试题3套(人教版含答案和解释)
- 高一数学向量单元检测试题及参考答案30
- 成都七中高一数学上册集合单元测试题及答案
- 2015高中数学必修四第一章三角函数作业题17套(人教版附答案和解释)
- 高一数学上册单元测试题(有答案)
- 2015高一数学第3章指数函数、对数函数和幂函数作业题15套(带答案和解释)
- 人教版高中数学必修1第一章集合与函数概念单元测试卷(共2套含解析)
相关内容
- 牛津深圳版五年级上册英语Unit7知识点:At the beach
- 牛津深圳版五年级上册英语Unit6知识点:Family life
- 牛津深圳版五年级上册英语Unit5知识点:Friends
- 牛津深圳版五年级上册英语Unit4知识点:Grandparents
- 牛津深圳版五年级上册英语Unit3知识点:My birthday
- 牛津深圳版五年级上册英语Unit2知识点:Going to school
- 牛津深圳版五年级上册英语Unit1知识点:My future
- 五年级上册英语第六单元知识点(PEP人教版)
- 五年级上册英语第五单元知识点(PEP人教版)
- 五年级上册英语第四单元知识点(PEP人教版)
下载排行
- 新冀教版九年级英语导学案Lesson28 Please Let There Be Peace
- 2017高考物理易错知识点归纳
- 人民版七年级思想品德上册复习提纲(1-5课)
- 2016—2017学年第二学期三年级数学下册第七单元集体备课教案
- 2017二年级语文下册第二单元教材分析
- 七年级下册《细胞的分裂和分化》学案1苏科版
- 2015年中考政治5月到12月时政材料
- 冀教版三年级上册语文复习要点(二)
- 高一语文必修三《李商隐诗两首》导学案
- 2017中考数学复习资料:三角形
客服服务微信
3215808601
北师大版三年级语文上册期中测试卷及答案
北师大版三年级语文上册期中测试卷及答案,三年级语文上册期中试卷,莲山课件.
关于我们
产品与服务
收费与推广
网站特色
咨询反馈
手机浏览
微信公众号
Copyright© 2006-2020 主站 www.5ykj.com , All Rights Reserved 闽ICP备12022453号-30
版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,
如有知识产权人并不愿意我们使用,如果有侵权请立即联系:3215808601@qq.com,我们立即下架或删除。
用微信扫一扫
2020-2021学年高一数学单元知识梳理:一元二次函数、方程和不等式
2020-2021学年高一数学单元知识梳理:一元二次函数、方程和不等式,高一数学知识点,一元二次函数,方程和不等式,莲山课件.