四川省成都七中2021届高三数学(文)上学期入学考试试题(Word版附答案)

四川省成都七中2021届高三数学(文)上学期入学考试试题(Word版附答案),高三数学上学期入学考试试题,四川省,成都七中,莲山课件.

成都七中2020~2021学年度上期2021届高三入学考试

数学试卷(理科)

考试时间:120分钟    总分:150分

一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求.把答案涂在答题卷上.)

1.已知集合 , ,则 (    )

A.     B.     C.     D.

2.复数 的模是(    )

A.1    B.     C.2    D.

3.已知命题 , ;命题 , ,则下列命题为真命题的是(    )

A.     B.     C.     D.

4.抛物线 的焦点为 ,点 在抛物线上,且点 到直线 的距离是线段 长度的2倍,则线段 的长度为(    )

A.1    B.2    C.3    D.4

5.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是(    )

A.55.2,3.6    B.55.2,56.4    C.64.8,63.6    D.64.8,3.6

6.设 , , ,则 , , 的大小关系是(    )

A.     B.     C.     D.

7.一空间几何体的三视图如图,则该几何体的体积可能为(    )

 

A.     B.     C.     D.

8.若 , 为锐角,且满足 , ,则 的值为(    )

A.     B.     C.     D.

9.已知数列 满足 , ,现将该数列按下图规律排成蛇形数阵(第 行有 个数, ),从左至右第 行第 个数记为 ( , 且 ),则 (    ).

 

A.     B.     C.     D.

10.已知函数 ,其中 , , 恒成立,且 在区间 上恰有两个零点,则 的取值范围是(    )

A.     B.     C.     D.

11.正方体 中,若 , 在底面 内运动,且满足 ,则点 的轨迹为(    )

 

A.椭圆的一部分        B.线段

C.抛物线的一部分        D.圆弧

12.己知函数 的定义域为 ,若对任意的 , , 恒成立,则实数 的取值范围为(    )

A.     B.     C.     D.

二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.)

13.在空间直角坐标系 中,记点 在 平面内的正投影为点 ,则 ________.

14.已知 , 满足 ,则 的最大值为________.

15.在 中, , , 分别是角 , , 的对边,且 ,若 , ,则 的值为________.

16.已知椭圆 与双曲线 共焦点, 、 分别为左、右焦点,曲线 与 在第一象限交点为 ,且离心率之积为1.若 ,则该双曲线的离心率为________.

三、解答题(共70分,22与23题二选一,各10分,其余大题均为12分)

17.(本题12分)设数列 的前 项和为 ,且 , ,数列 满足 ,点 在直线 上, .

(Ⅰ)求数列 , 的通项公式;

(Ⅱ)设 ,求数列 的前 项和 .

18.(本题12分)某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量 与尺寸 之间近似满足关系式 ( , 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间(0.302,0.388)内时为优等品现随机抽取6件合格产品,测得数据如下:

尺寸

38    48    58    68    78    88

质量

16.8    18.8    20.7    22.4    24    25.5

质量与尺寸的比

0.442    0.392    0.357    0.329    0.308    0.290

(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率;

(2)根据测得数据作了初步处理,得相关统计量的值如下表:

 

 

 

 

75.3    24.6    18.3    101.4

根据所给统计量,求 关于 的回归方程.

附:对于样本 ,其回归直线 的斜率和截距的最小二乘法估计公式分别为: , , .

19.(本题12分)如图,在以 为顶点的圆锥中,母线长为 ,底面圆的直径 长为2, 为圆心. 是圆 所在平面上一点,且 与圆 相切.连接 交圆于点 ,连接 , , 是 的中点,连接 , .

 

(1)求证:平面 平面 ;

(2)若二面角 的大小为 ,求平面 与平面 所成锐二面角的余弦值.

20.(本题12分)已知抛物线 , 为其焦点,椭圆 , , 为其左右焦点,离心率 ,过 作 轴的平行线交椭圆于 , 两点, .

 

(1)求椭圆的标准方程;

(2)过抛物线上一点 作切线 交椭圆于 , 两点,设 与 轴的交点为 , 的中点为 , 的中垂线交 轴为 , , 的面积分别记为 , ,若 ,且点 在第一象限.求点 的坐标.

21.(本题12分)已知函数 , ,其中 是自然对数的底数.

(1)若曲线 在 处的切线与曲线 也相切.求实数 的值;

(2)设 ,求证:当 时, 恰好有2个零点.

(22题与23题为选做题,二选一)

22.(本题10分)在直角坐标系 中,曲线 的参数方程为 ( 为参数).

(1)求曲线 的普通方程;

(2)以 为极点, 轴的非负半轴为极轴建立极坐标系,直线 的极坐标方程为 , ,直线 与曲线 交于 , 两点,求线段 的长度 .

23.(本题10分)已知函数 , 为不等式 的解集.

(1)求 ;

(2)证明:当 ,

天津市实验中学2021届高三数学上学期第一次阶段试题(Word版附解析)

天津市实验中学2021届高三数学上学期第一次阶段试题(Word版附解析),高三数学上学期第一次阶段试题,天津市实验中学,莲山课件.

时, .

成都七中2020-2021学年度上期2021届高三入学考试

数学试卷(理科)答案

1-5:CBCBD    6-10:BBBDA    11-12:DB

13.     14.     15.1或3    16.

17.【答案】(Ⅰ)     (Ⅱ)

【解析】(1)由 可得 ,

两式相减得 .

又 ,所以 .

故 是首项为1,公比为3的等比数列.所以 .

由点 在直线 上,所以 .

则数列 是首项为1,公差为2的等差数列.则 .

(Ⅱ)因为 ,所以 .

则 ,

两式相减得:  

 



18.【答案】(1) ;    (2) .

【解析】(1)由已知,优等品的质量与尺寸的比

则随机抽取的6件合格产品中,有3件为优等品,有3件为非优等品,

所求概率为 .

(2)对 两边取自然对数得

令 , ,则 ,且

由所给统计量及最小二乘估计公式有:

 

 ,

由 得 ,

所以 关于 的回归方程为 .

19.【解析】(1)证明: 是底面圆的直径, 与圆切于点 ,

所以 ,

又 底面,则 , ,

所以: 面 ,

又因为,在三角形 中,

 ,所以 面 ,∵ 面

所以:平面 平面 ;

(2)因为 , ,

∴ 为二面角 的平面角,

∴ ,如图建立坐标系,易知 ,

 

则 , , , , , ,

由(1)知 为平面 的一个法向量,

设平面 的法向量为 ,

 ,

 ,

解得: ,

 .

20.【答案】(1) .    (2)

【解析】(1)不妨设 在第一象限,由题可知 ,∴ ,

又∵ ,∴ ,可得 ,椭圆的方程为 .

(2)设 则切线 的方程为

 

代入椭圆方程得: ,

设 , , ,

则 , ,

 的方程为 ,

即 ,令 得 ,

在直线 方程中令 得 ,

 , , ,∴ , ,

∴ ,∴ .

化简得 ,

∴ ( 舍去)∴ 的坐标为 , ,

 ,

因为 ,故此解符合题意.

21.【解析】(1)由 得 ,所以切线的斜率 .

因为切点坐标为 ,所以切线的方程为 .

设曲线 的切点坐标为 .

由 得 ,所以 ,得 .

所以切点坐标为 .因为对 也在直线 上.所以 .

(2)由 ,得 .

令 , ,当 时, ,

故 在 上单调递增.

又因为 ,且 .

所以 在 上有唯一解,从而 在 上有唯一解.

不妨设为 ,则 .

当 时, ,所以 在 上单调递减;

当 时, ,所以 在 上单调递增.

故 是 的唯一极值点.

令 ,则当 时, ,所以 在 上单调递减,

从而当 时, ,即 ,

所以  ,

又因为 ,所以 在 上有唯一零点.

又因为 在 上有唯一零点,为1,

所以 在 上恰好有2个零点.

另解:∵ ,∴ ,再证明 .

22.【答案】(1) ( 或 );(2) .

【解析】(1)曲线 的参数方程为 ( 为参数),

将①式两边平方,得 ③,

③ ②,得 ,即 ,

因为 ,当且仅当 ,

即 时取“ ”,所以 ,即 或 ,

所以曲线 的普通方程为 ( 或 ).

(2)把 代入曲线 得: , ,

则曲线 的极坐标方程为 ,

设 , 的极坐标分别为 , ,由

得 ,即 ,且

因为 ,∴ 或 ,

满足 ,不妨设 ,

所以 .

注:没考虑 要酌情扣分

23.【解析】(1)

所以不等式的解集为 .

(2)要证 ,只需证 ,

即证 ,只需证 ,即 ,

即证 ,只需证

因为 , ,所以 ,

所以所证不等式成立.

云南师范大学附属中学2021届高三数学(理)高考适应性月考试卷(一)(Word版附答案)

云南师范大学附属中学2021届高三数学(理)高考适应性月考试卷(一)(Word版附答案),高三数学高考适应性月考试卷,云南师范大学附属中学,莲山课件.