2022年全国乙卷数学(理科)高考真题PDF版(原卷及答案)

2022年全国乙卷数学(理科)高考真题PDF版(答案)

2022年普通高等学校招生全国统一考试数学(理科)参考答案注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案

2022年普通高等学校招生全国统一考试(全国乙卷)数学(理科)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它

简介:2022年普通高等学校招生全国统一考试(全国乙卷)数学(理科)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集U{1,2,3,4,5},集合M满足ðM{1,3},则()UA.2MB.3MC.4MD.5M2.已知z12i,且zazb0,其中a,b为实数,则()A.a1,b2B.a1,b2C.a1,b2D.a1,b23.已知向量a,b满足|a|1,|b|3,|a2b|3,则ab()A.2B.1C.1D.24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的1人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列bn:b11,111b21,b31,…,依此类推,其中kN(k1,2,).则11111223()A.bbB.bbC.bbD.bb1538624725.设F为抛物线C:y4x的焦点,点A在C上,点B(3,0),若|AF||BF|,则|AB|()A.2B.22C.3D.326.执行下边的程序框图,输出的n() A.3B.4C.5D.67.在正方体ABCDABCD中,E,F分别为AB,BC的中点,则()1111A.平面BEF平面BDDB.平面BEF平面ABD1111C.平面BEF∥平面AACD.平面BEF∥平面ACD111118.已知等比数列an的前3项和为168,a2a542,则a6()A.14B.12C.6D.39.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()1132A.B.C.D.323210.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p,p,p,且ppp0.记该棋手连胜两盘的概率为123321p,则()A.p与该棋手和甲、乙、丙的此赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大11.双曲线C的两个焦点为F,F,以C的实轴为直径的圆记为D,过F作D的切线与C1213交于M,N两点,且cosFNF,则C的离心率为()125531317A.B.C.D.222212.已知函数f(x),g(x)的定义域均为R,且f(x)g(2x)5,g(x)f(x4)7.若22yg(x)的图像关于直线x2对称,g(2)4,则f(k)()k1A.21B.22C.23D.24 二、填空题:本题共4小题,每小题5分,共20分.13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.14.过四点(0,0),(4,0),(1,1),(4,2)中的三点的一个圆的方程为____________.315.记函数f(x)cos(x)(0,0)的最小正周期为T,若f(T),2x为f(x)的零点,则的最小值为____________.9×216.己知xx和xx分别是函数f(x)2aex(a0且a1)的极小值点和极大12值点.若xx,则a的取值范围是____________.12三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(AB)sinBsin(CA).222(1)证明:2abc;25(2)若a5,cosA,求△ABC的周长.3118.(2分)如图,四面体ABCD中,ADCD,ADCD,ADBBDC,E为AC的中点.(1)证明:平面BED平面ACD;(2)设ABBD2,ACB60,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.19.(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量, 2随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m)和材积量(单位:3m),得到如下数据:样本号i12345678910总和根部横截面积x0.040.060.040.080.080.050.050.070.070.060.6i材积量y0.250.400.220.540.510.340.360.460.420.403.9i10101022并计算得xi0.038,yi1.6158,xiyi0.2474.i=1i=1i=1(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积2总和为186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.n(xix)(yiy)i=1附:相关系数r,1.8961.377.nn22(xix)(yiy)i=1i=120.(12分)3已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A0,2,B,1两点.2(1)求E的方程;(2)设过点P1,2的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足MTTH.证明:直线HN过定点.21.(12分)x已知函数fxln1xaxe.(1)当a1时,求曲线yfx在点0,f0处的切线方程;(2)若fx在区间1,0,0,各恰有一个零点,求a的取值范围.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)x3cos2t,在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点为极y2sint 点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为sinm0.3(1)写出l的直角坐标方程;(2)若l与C有公共点,求m的取值范围.23.[选修4-5:不等式选讲](10分)333已知a,b,c都是正数,且a2b2c21,证明:1(1)abc;9abc1(2).bcacab2abc2022年普通高等学校招生全国统一考试数学(理科)参考答案注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.A3.C.4.D5.B6.B7.A8.D9.C10.D11.C12.D二、填空题:本题共4小题,每小题5分,共20分.313.10222222476514.x2y313或x2y15或xy或339282169xy1;52515.3116.,1e 三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(1)证明:因为sinCsinABsinBsinCA,所以sinCsinAcosBsinCsinBcosAsinBsinCcosAsinBsinAcosC,222222222acbbcaabc所以ac2bcab,2ac2bc2ab222222acb222abc即bca,22所以222;2abc(2)25解:因为a5,cosA,31由(1)得22,bc50222由余弦定理可得abc2bccosA,50则50bc25,3131所以bc,2222故bcbc2bc503181,所以bc9,所以ABC的周长为abc14.18.(1)因为ADCD,E为AC的中点,所以ACDE;在△ABD和CBD中,因为ADCD,ADBCDB,DBDB,所以△ABD≌△CBD,所以ABCB,又因为E为AC的中点,所以ACBE;又因为DE,BE平面BED,DEBEE,所以AC平面BED, 因为AC平面ACD,所以平面BED平面ACD.(2)连接EF,由(1)知,AC平面BED,因为EF平面BED,1所以ACEF,所以S=ACEF,△AFC2当EFBD时,EF最小,即△AFC的面积最小.因为△ABD≌△CBD,所以CBAB2,又因为ACB60,所以ABC是等边三角形,因为E为AC的中点,所以AEEC1,BE3,1因为ADCD,所以DEAC1,2在DEB中,222,所以.DEBEBDBEDE以E为坐标原点建立如图所示的空间直角坐标系Exyz,则A1,0,0,B0,3,0,D0,0,1,所以AD1,0,1,AB1,3,0,设平面ABD的一个法向量为nx,y,z,nADxz0则,取y3,则n3,3,3,nABx3y03333又因为C1,0,0,F0,,,所以CF1,,,4444nCF643cosn,CF所以nCF77,214设CF与平面ABD所成的角的正弦值为0,243所以sincosn,CF,743所以CF与平面ABD所成的角的正弦值为.7 19.(1)0.6样本中10棵这种树木的根部横截面积的平均值x0.06103.9样本中10棵这种树木的材积量的平均值y0.39102据此可估计该林区这种树木平均一棵的根部横截面积为0.06m,平均一棵的材积量为30.39m(2)1010xixyiyxiyi10xyi=1i=1r10101010xx2yy2x2x2y2y2iii10i10i=1i=1i=1i=10.2474100.060.390.01340.01340.97(0.038100.062)(1.6158100.392)0.00018960.01377则r0.97(3)设该林区这种树木的总材积量的估计值为3,Ym又已知树木的材积量与其根部横截面积近似成正比,0.06186可得=,解之得3.Y=1209m0.39Y则该林区这种树木的总材积量估计为31209m20. (1)223解:设椭圆E的方程为mxny1,过A0,2,B,1,24n111则9,解得m,n,mn134422yx所以椭圆E的方程为:1.43(2)32A(0,2),B(,1),所以AB:y2x,2322xy①若过点P(1,2)的直线斜率不存在,直线x1.代入1,3426262可得M(1,),N(1,),代入AB方程yx2,可得3332626T(63,),由MTTH得到H(265,).求得HN方程:3326y(2)x2,过点(0,2).3②若过点P(1,2)的直线斜率存在,设kxy(k2)0,M(x1,y1),N(x2,y2).kxy(k2)022,22联立xy得(3k4)x6k(2k)x3k(k4)0,1346k(2k)8(2k)x1x22y1y223k43k4可得,,2xx3k(4k)4(44k2k)122y2y223k43k424k且xyxy(*)122123k4yy13y2,1联立可得T(3,y1),H(3y16x1,y1).yx223yy12可求得此时HN:yy2(xx2),3y6xx112将(0,2),代入整理得2(x1x2)6(y1y2)x1y2x2y13y1y2120, 222将(*)代入,得24k12k9648k24k4848k24k36k480,显然成立,综上,可得直线HN过定点(0,2).21.(1)f(x)的定义域为(1,)x当a1时,f(x)ln(1x),f(0)0,所以切点为xe11x(0,0)f(x),f(0)2,所以切线斜率为2×1xe所以曲线yf(x)在点(0,f(0))处的切线方程为y2x(2)axf(x)ln(1x)xex21a(1x)ea1xf(x)xx1xe(1x)ex2设g(x)ea1xx(1,0),g(x)exa1x20f(x)01若a0,当,即所以f(x)在(1,0)上单调递增,f(x)f(0)0故f(x)在(1,0)上没有零点,不合题意若1„a„0,当x(0,),则g(x)ex2ax02所以g(x)在(0,)上单调递增所以g(x)g(0)1a…0,即f(x)0所以f(x)在(0,)上单调递增,f(x)f(0)0故f(x)在(0,)上没有零点,不合题意a13若x(1)当x(0,),则g(x)e2ax0,所以g(x)在(0,)上单调递增g(0)1a0,g(1)e0所以存在m(0,1),使得g(m)0,即f(m)0当x(0,m),f(x)0,f(x)单调递减 当x(m,),f(x)0,f(x)单调递增所以当x(0,m),f(x)f(0)0当x,f(x)所以f(x)在(m,)上有唯一零点又(0,m)没有零点,即f(x)在(0,)上有唯一零点x2(2)当x(1,0),g(x)ea1xx设h(x)g(x)e2axxh(x)e2a0所以g(x)在(1,0)单调递增1g(1)2a0,g(0)10e所以存在n(1,0),使得g(n)0当x(1,n),g(x)0,g(x)单调递减当x(n,0),g(x)0,g(x)单调递增,g(x)g(0)1a01又g(1)0e所以存在t(1,n),使得g(t)0,即f(t)0当x(1,t),f(x)单调递增,当x(t,0),f(x)单调递减有x1,f(x)而f(0)0,所以当x(t,0),f(x)0所以f(x)在(1,t)上有唯一零点,(t,0)上无零点即f(x)在(1,0)上有唯一零点所以a1,符合题意所以若f(x)在区间(1,0),(0,)各恰有一个零点,求的取值范围为a(,1) (二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(1)13因为l:sinm0,所以sincosm0,32213又因为siny,cosx,所以化简为yxm0,22整理得l的直角坐标方程:3xy2m0(2)联立l与C的方程,即将x3cos2t,y2sint代入3xy2m0中,可得3cos2t2sint2m0,2所以3(12sint)2sint2m0,2化简为6sint2sint32m0,2要使l与C有公共点,则2m6sint2sint3有解,2令sinta,则a1,1,令f(a)6a2a3,(1≤a≤1),1对称轴为a,开口向上,6所以f(a)maxf(1)6235,11219f(a)f()3,min6666 19所以2m56195m的取值范围为m.122[选修4-5:不等式选讲]23.(1)333证明:因为a0,b0,c0,则a20,b20,c20,333222333所以abc3,a2b2c231113331即abc2,所以abc,当且仅当a2b2c2,即abc3时取等号.399(2)证明:因为a0,b0,c0,所以bc2bc,ac2ac,ab2ab,333aaa2bbb2ccc2所以,,bc2bc2abcac2ac2abcab2ab2abc333333abca2b2c2a2b2c21bcacab2abc2abc2abc2abc2abc当且仅当abc时取等号.
简介:2022年普通高等学校招生全国统一考试(全国乙卷)数学(理科)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集U{1,2,3,4,5},集合M满足ðM{1,3},则()UA.2MB.3MC.4MD.5M2.已知z12i,且zazb0,其中a,b为实数,则()A.a1,b2B.a1,b2C.a1,b2D.a1,b23.已知向量a,b满足|a|1,|b|3,|a2b|3,则ab()A.2B.1C.1D.24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的1人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列bn:b11,111b21,b31,…,依此类推,其中kN(k1,2,).则11111223()A.bbB.bbC.bbD.bb1538624725.设F为抛物线C:y4x的焦点,点A在C上,点B(3,0),若|AF||BF|,则|AB|()A.2B.22C.3D.326.执行下边的程序框图,输出的n() A.3B.4C.5D.67.在正方体ABCDABCD中,E,F分别为AB,BC的中点,则()1111A.平面BEF平面BDDB.平面BEF平面ABD1111C.平面BEF∥平面AACD.平面BEF∥平面ACD111118.已知等比数列an的前3项和为168,a2a542,则a6()A.14B.12C.6D.39.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()1132A.B.C.D.323210.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p,p,p,且ppp0.记该棋手连胜两盘的概率为123321p,则()A.p与该棋手和甲、乙、丙的此赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大11.双曲线C的两个焦点为F,F,以C的实轴为直径的圆记为D,过F作D的切线与C1213交于M,N两点,且cosFNF,则C的离心率为()125531317A.B.C.D.222212.已知函数f(x),g(x)的定义域均为R,且f(x)g(2x)5,g(x)f(x4)7.若22yg(x)的图像关于直线x2对称,g(2)4,则f(k)()k1A.21B.22C.23D.24 二、填空题:本题共4小题,每小题5分,共20分.13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.14.过四点(0,0),(4,0),(1,1),(4,2)中的三点的一个圆的方程为____________.315.记函数f(x)cos(x)(0,0)的最小正周期为T,若f(T),2x为f(x)的零点,则的最小值为____________.9×216.己知xx和xx分别是函数f(x)2aex(a0且a1)的极小值点和极大12值点.若xx,则a的取值范围是____________.12三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(AB)sinBsin(CA).222(1)证明:2abc;25(2)若a5,cosA,求△ABC的周长.3118.(2分)如图,四面体ABCD中,ADCD,ADCD,ADBBDC,E为AC的中点.(1)证明:平面BED平面ACD;(2)设ABBD2,ACB60,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.19.(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量, 2随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m)和材积量(单位:3m),得到如下数据:样本号i12345678910总和根部横截面积x0.040.060.040.080.080.050.050.070.070.060.6i材积量y0.250.400.220.540.510.340.360.460.420.403.9i10101022并计算得xi0.038,yi1.6158,xiyi0.2474.i=1i=1i=1(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积2总和为186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.n(xix)(yiy)i=1附:相关系数r,1.8961.377.nn22(xix)(yiy)i=1i=120.(12分)3已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A0,2,B,1两点.2(1)求E的方程;(2)设过点P1,2的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足MTTH.证明:直线HN过定点.21.(12分)x已知函数fxln1xaxe.(1)当a1时,求曲线yfx在点0,f0处的切线方程;(2)若fx在区间1,0,0,各恰有一个零点,求a的取值范围.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)x3cos2t,在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点为极y2sint 点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为sinm0.3(1)写出l的直角坐标方程;(2)若l与C有公共点,求m的取值范围.23.[选修4-5:不等式选讲](10分)333已知a,b,c都是正数,且a2b2c21,证明:1(1)abc;9abc1(2).bcacab2abc2022年普通高等学校招生全国统一考试数学(理科)参考答案注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.A3.C.4.D5.B6.B7.A8.D9.C10.D11.C12.D二、填空题:本题共4小题,每小题5分,共20分.313.10222222476514.x2y313或x2y15或xy或339282169xy1;52515.3116.,1e 三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(1)证明:因为sinCsinABsinBsinCA,所以sinCsinAcosBsinCsinBcosAsinBsinCcosAsinBsinAcosC,222222222acbbcaabc所以ac2bcab,2ac2bc2ab222222acb222abc即bca,22所以222;2abc(2)25解:因为a5,cosA,31由(1)得22,bc50222由余弦定理可得abc2bccosA,50则50bc25,3131所以bc,2222故bcbc2bc503181,所以bc9,所以ABC的周长为abc14.18.(1)因为ADCD,E为AC的中点,所以ACDE;在△ABD和CBD中,因为ADCD,ADBCDB,DBDB,所以△ABD≌△CBD,所以ABCB,又因为E为AC的中点,所以ACBE;又因为DE,BE平面BED,DEBEE,所以AC平面BED, 因为AC平面ACD,所以平面BED平面ACD.(2)连接EF,由(1)知,AC平面BED,因为EF平面BED,1所以ACEF,所以S=ACEF,△AFC2当EFBD时,EF最小,即△AFC的面积最小.因为△ABD≌△CBD,所以CBAB2,又因为ACB60,所以ABC是等边三角形,因为E为AC的中点,所以AEEC1,BE3,1因为ADCD,所以DEAC1,2在DEB中,222,所以.DEBEBDBEDE以E为坐标原点建立如图所示的空间直角坐标系Exyz,则A1,0,0,B0,3,0,D0,0,1,所以AD1,0,1,AB1,3,0,设平面ABD的一个法向量为nx,y,z,nADxz0则,取y3,则n3,3,3,nABx3y03333又因为C1,0,0,F0,,,所以CF1,,,4444nCF643cosn,CF所以nCF77,214设CF与平面ABD所成的角的正弦值为0,243所以sincosn,CF,743所以CF与平面ABD所成的角的正弦值为.7 19.(1)0.6样本中10棵这种树木的根部横截面积的平均值x0.06103.9样本中10棵这种树木的材积量的平均值y0.39102据此可估计该林区这种树木平均一棵的根部横截面积为0.06m,平均一棵的材积量为30.39m(2)1010xixyiyxiyi10xyi=1i=1r10101010xx2yy2x2x2y2y2iii10i10i=1i=1i=1i=10.2474100.060.390.01340.01340.97(0.038100.062)(1.6158100.392)0.00018960.01377则r0.97(3)设该林区这种树木的总材积量的估计值为3,Ym又已知树木的材积量与其根部横截面积近似成正比,0.06186可得=,解之得3.Y=1209m0.39Y则该林区这种树木的总材积量估计为31209m20. (1)223解:设椭圆E的方程为mxny1,过A0,2,B,1,24n111则9,解得m,n,mn134422yx所以椭圆E的方程为:1.43(2)32A(0,2),B(,1),所以AB:y2x,2322xy①若过点P(1,2)的直线斜率不存在,直线x1.代入1,3426262可得M(1,),N(1,),代入AB方程yx2,可得3332626T(63,),由MTTH得到H(265,).求得HN方程:3326y(2)x2,过点(0,2).3②若过点P(1,2)的直线斜率存在,设kxy(k2)0,M(x1,y1),N(x2,y2).kxy(k2)022,22联立xy得(3k4)x6k(2k)x3k(k4)0,1346k(2k)8(2k)x1x22y1y223k43k4可得,,2xx3k(4k)4(44k2k)122y2y223k43k424k且xyxy(*)122123k4yy13y2,1联立可得T(3,y1),H(3y16x1,y1).yx223yy12可求得此时HN:yy2(xx2),3y6xx112将(0,2),代入整理得2(x1x2)6(y1y2)x1y2x2y13y1y2120, 222将(*)代入,得24k12k9648k24k4848k24k36k480,显然成立,综上,可得直线HN过定点(0,2).21.(1)f(x)的定义域为(1,)x当a1时,f(x)ln(1x),f(0)0,所以切点为xe11x(0,0)f(x),f(0)2,所以切线斜率为2×1xe所以曲线yf(x)在点(0,f(0))处的切线方程为y2x(2)axf(x)ln(1x)xex21a(1x)ea1xf(x)xx1xe(1x)ex2设g(x)ea1xx(1,0),g(x)exa1x20f(x)01若a0,当,即所以f(x)在(1,0)上单调递增,f(x)f(0)0故f(x)在(1,0)上没有零点,不合题意若1„a„0,当x(0,),则g(x)ex2ax02所以g(x)在(0,)上单调递增所以g(x)g(0)1a…0,即f(x)0所以f(x)在(0,)上单调递增,f(x)f(0)0故f(x)在(0,)上没有零点,不合题意a13若x(1)当x(0,),则g(x)e2ax0,所以g(x)在(0,)上单调递增g(0)1a0,g(1)e0所以存在m(0,1),使得g(m)0,即f(m)0当x(0,m),f(x)0,f(x)单调递减 当x(m,),f(x)0,f(x)单调递增所以当x(0,m),f(x)f(0)0当x,f(x)所以f(x)在(m,)上有唯一零点又(0,m)没有零点,即f(x)在(0,)上有唯一零点x2(2)当x(1,0),g(x)ea1xx设h(x)g(x)e2axxh(x)e2a0所以g(x)在(1,0)单调递增1g(1)2a0,g(0)10e所以存在n(1,0),使得g(n)0当x(1,n),g(x)0,g(x)单调递减当x(n,0),g(x)0,g(x)单调递增,g(x)g(0)1a01又g(1)0e所以存在t(1,n),使得g(t)0,即f(t)0当x(1,t),f(x)单调递增,当x(t,0),f(x)单调递减有x1,f(x)而f(0)0,所以当x(t,0),f(x)0所以f(x)在(1,t)上有唯一零点,(t,0)上无零点即f(x)在(1,0)上有唯一零点所以a1,符合题意所以若f(x)在区间(1,0),(0,)各恰有一个零点,求的取值范围为a(,1) (二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(1)13因为l:sinm0,所以sincosm0,32213又因为siny,cosx,所以化简为yxm0,22整理得l的直角坐标方程:3xy2m0(2)联立l与C的方程,即将x3cos2t,y2sint代入3xy2m0中,可得3cos2t2sint2m0,2所以3(12sint)2sint2m0,2化简为6sint2sint32m0,2要使l与C有公共点,则2m6sint2sint3有解,2令sinta,则a1,1,令f(a)6a2a3,(1≤a≤1),1对称轴为a,开口向上,6所以f(a)maxf(1)6235,11219f(a)f()3,min6666 19所以2m56195m的取值范围为m.122[选修4-5:不等式选讲]23.(1)333证明:因为a0,b0,c0,则a20,b20,c20,333222333所以abc3,a2b2c231113331即abc2,所以abc,当且仅当a2b2c2,即abc3时取等号.399(2)证明:因为a0,b0,c0,所以bc2bc,ac2ac,ab2ab,333aaa2bbb2ccc2所以,,bc2bc2abcac2ac2abcab2ab2abc333333abca2b2c2a2b2c21bcacab2abc2abc2abc2abc2abc当且仅当abc时取等号.
简介:2022年普通高等学校招生全国统一考试(全国乙卷)数学(理科)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集U{1,2,3,4,5},集合M满足ðM{1,3},则()UA.2MB.3MC.4MD.5M2.已知z12i,且zazb0,其中a,b为实数,则()A.a1,b2B.a1,b2C.a1,b2D.a1,b23.已知向量a,b满足|a|1,|b|3,|a2b|3,则ab()A.2B.1C.1D.24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的1人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列bn:b11,111b21,b31,…,依此类推,其中kN(k1,2,).则11111223()A.bbB.bbC.bbD.bb1538624725.设F为抛物线C:y4x的焦点,点A在C上,点B(3,0),若|AF||BF|,则|AB|()A.2B.22C.3D.326.执行下边的程序框图,输出的n() A.3B.4C.5D.67.在正方体ABCDABCD中,E,F分别为AB,BC的中点,则()1111A.平面BEF平面BDDB.平面BEF平面ABD1111C.平面BEF∥平面AACD.平面BEF∥平面ACD111118.已知等比数列an的前3项和为168,a2a542,则a6()A.14B.12C.6D.39.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()1132A.B.C.D.323210.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p,p,p,且ppp0.记该棋手连胜两盘的概率为123321p,则()A.p与该棋手和甲、乙、丙的此赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大11.双曲线C的两个焦点为F,F,以C的实轴为直径的圆记为D,过F作D的切线与C1213交于M,N两点,且cosFNF,则C的离心率为()125531317A.B.C.D.222212.已知函数f(x),g(x)的定义域均为R,且f(x)g(2x)5,g(x)f(x4)7.若22yg(x)的图像关于直线x2对称,g(2)4,则f(k)()k1A.21B.22C.23D.24 二、填空题:本题共4小题,每小题5分,共20分.13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.14.过四点(0,0),(4,0),(1,1),(4,2)中的三点的一个圆的方程为____________.315.记函数f(x)cos(x)(0,0)的最小正周期为T,若f(T),2x为f(x)的零点,则的最小值为____________.9×216.己知xx和xx分别是函数f(x)2aex(a0且a1)的极小值点和极大12值点.若xx,则a的取值范围是____________.12三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(AB)sinBsin(CA).222(1)证明:2abc;25(2)若a5,cosA,求△ABC的周长.3118.(2分)如图,四面体ABCD中,ADCD,ADCD,ADBBDC,E为AC的中点.(1)证明:平面BED平面ACD;(2)设ABBD2,ACB60,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.19.(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量, 2随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m)和材积量(单位:3m),得到如下数据:样本号i12345678910总和根部横截面积x0.040.060.040.080.080.050.050.070.070.060.6i材积量y0.250.400.220.540.510.340.360.460.420.403.9i10101022并计算得xi0.038,yi1.6158,xiyi0.2474.i=1i=1i=1(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积2总和为186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.n(xix)(yiy)i=1附:相关系数r,1.8961.377.nn22(xix)(yiy)i=1i=120.(12分)3已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A0,2,B,1两点.2(1)求E的方程;(2)设过点P1,2的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足MTTH.证明:直线HN过定点.21.(12分)x已知函数fxln1xaxe.(1)当a1时,求曲线yfx在点0,f0处的切线方程;(2)若fx在区间1,0,0,各恰有一个零点,求a的取值范围.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)x3cos2t,在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点为极y2sint 点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为sinm0.3(1)写出l的直角坐标方程;(2)若l与C有公共点,求m的取值范围.23.[选修4-5:不等式选讲](10分)333已知a,b,c都是正数,且a2b2c21,证明:1(1)abc;9abc1(2).bcacab2abc2022年普通高等学校招生全国统一考试数学(理科)参考答案注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.A3.C.4.D5.B6.B7.A8.D9.C10.D11.C12.D二、填空题:本题共4小题,每小题5分,共20分.313.10222222476514.x2y313或x2y15或xy或339282169xy1;52515.3116.,1e 三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(1)证明:因为sinCsinABsinBsinCA,所以sinCsinAcosBsinCsinBcosAsinBsinCcosAsinBsinAcosC,222222222acbbcaabc所以ac2bcab,2ac2bc2ab222222acb222abc即bca,22所以222;2abc(2)25解:因为a5,cosA,31由(1)得22,bc50222由余弦定理可得abc2bccosA,50则50bc25,3131所以bc,2222故bcbc2bc503181,所以bc9,所以ABC的周长为abc14.18.(1)因为ADCD,E为AC的中点,所以ACDE;在△ABD和CBD中,因为ADCD,ADBCDB,DBDB,所以△ABD≌△CBD,所以ABCB,又因为E为AC的中点,所以ACBE;又因为DE,BE平面BED,DEBEE,所以AC平面BED, 因为AC平面ACD,所以平面BED平面ACD.(2)连接EF,由(1)知,AC平面BED,因为EF平面BED,1所以ACEF,所以S=ACEF,△AFC2当EFBD时,EF最小,即△AFC的面积最小.因为△ABD≌△CBD,所以CBAB2,又因为ACB60,所以ABC是等边三角形,因为E为AC的中点,所以AEEC1,BE3,1因为ADCD,所以DEAC1,2在DEB中,222,所以.DEBEBDBEDE以E为坐标原点建立如图所示的空间直角坐标系Exyz,则A1,0,0,B0,3,0,D0,0,1,所以AD1,0,1,AB1,3,0,设平面ABD的一个法向量为nx,y,z,nADxz0则,取y3,则n3,3,3,nABx3y03333又因为C1,0,0,F0,,,所以CF1,,,4444nCF643cosn,CF所以nCF77,214设CF与平面ABD所成的角的正弦值为0,243所以sincosn,CF,743所以CF与平面ABD所成的角的正弦值为.7 19.(1)0.6样本中10棵这种树木的根部横截面积的平均值x0.06103.9样本中10棵这种树木的材积量的平均值y0.39102据此可估计该林区这种树木平均一棵的根部横截面积为0.06m,平均一棵的材积量为30.39m(2)1010xixyiyxiyi10xyi=1i=1r10101010xx2yy2x2x2y2y2iii10i10i=1i=1i=1i=10.2474100.060.390.01340.01340.97(0.038100.062)(1.6158100.392)0.00018960.01377则r0.97(3)设该林区这种树木的总材积量的估计值为3,Ym又已知树木的材积量与其根部横截面积近似成正比,0.06186可得=,解之得3.Y=1209m0.39Y则该林区这种树木的总材积量估计为31209m20. (1)223解:设椭圆E的方程为mxny1,过A0,2,B,1,24n111则9,解得m,n,mn134422yx所以椭圆E的方程为:1.43(2)32A(0,2),B(,1),所以AB:y2x,2322xy①若过点P(1,2)的直线斜率不存在,直线x1.代入1,3426262可得M(1,),N(1,),代入AB方程yx2,可得3332626T(63,),由MTTH得到H(265,).求得HN方程:3326y(2)x2,过点(0,2).3②若过点P(1,2)的直线斜率存在,设kxy(k2)0,M(x1,y1),N(x2,y2).kxy(k2)022,22联立xy得(3k4)x6k(2k)x3k(k4)0,1346k(2k)8(2k)x1x22y1y223k43k4可得,,2xx3k(4k)4(44k2k)122y2y223k43k424k且xyxy(*)122123k4yy13y2,1联立可得T(3,y1),H(3y16x1,y1).yx223yy12可求得此时HN:yy2(xx2),3y6xx112将(0,2),代入整理得2(x1x2)6(y1y2)x1y2x2y13y1y2120, 222将(*)代入,得24k12k9648k24k4848k24k36k480,显然成立,综上,可得直线HN过定点(0,2).21.(1)f(x)的定义域为(1,)x当a1时,f(x)ln(1x),f(0)0,所以切点为xe11x(0,0)f(x),f(0)2,所以切线斜率为2×1xe所以曲线yf(x)在点(0,f(0))处的切线方程为y2x(2)axf(x)ln(1x)xex21a(1x)ea1xf(x)xx1xe(1x)ex2设g(x)ea1xx(1,0),g(x)exa1x20f(x)01若a0,当,即所以f(x)在(1,0)上单调递增,f(x)f(0)0故f(x)在(1,0)上没有零点,不合题意若1„a„0,当x(0,),则g(x)ex2ax02所以g(x)在(0,)上单调递增所以g(x)g(0)1a…0,即f(x)0所以f(x)在(0,)上单调递增,f(x)f(0)0故f(x)在(0,)上没有零点,不合题意a13若x(1)当x(0,),则g(x)e2ax0,所以g(x)在(0,)上单调递增g(0)1a0,g(1)e0所以存在m(0,1),使得g(m)0,即f(m)0当x(0,m),f(x)0,f(x)单调递减 当x(m,),f(x)0,f(x)单调递增所以当x(0,m),f(x)f(0)0当x,f(x)所以f(x)在(m,)上有唯一零点又(0,m)没有零点,即f(x)在(0,)上有唯一零点x2(2)当x(1,0),g(x)ea1xx设h(x)g(x)e2axxh(x)e2a0所以g(x)在(1,0)单调递增1g(1)2a0,g(0)10e所以存在n(1,0),使得g(n)0当x(1,n),g(x)0,g(x)单调递减当x(n,0),g(x)0,g(x)单调递增,g(x)g(0)1a01又g(1)0e所以存在t(1,n),使得g(t)0,即f(t)0当x(1,t),f(x)单调递增,当x(t,0),f(x)单调递减有x1,f(x)而f(0)0,所以当x(t,0),f(x)0所以f(x)在(1,t)上有唯一零点,(t,0)上无零点即f(x)在(1,0)上有唯一零点所以a1,符合题意所以若f(x)在区间(1,0),(0,)各恰有一个零点,求的取值范围为a(,1) (二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(1)13因为l:sinm0,所以sincosm0,32213又因为siny,cosx,所以化简为yxm0,22整理得l的直角坐标方程:3xy2m0(2)联立l与C的方程,即将x3cos2t,y2sint代入3xy2m0中,可得3cos2t2sint2m0,2所以3(12sint)2sint2m0,2化简为6sint2sint32m0,2要使l与C有公共点,则2m6sint2sint3有解,2令sinta,则a1,1,令f(a)6a2a3,(1≤a≤1),1对称轴为a,开口向上,6所以f(a)maxf(1)6235,11219f(a)f()3,min6666 19所以2m56195m的取值范围为m.122[选修4-5:不等式选讲]23.(1)333证明:因为a0,b0,c0,则a20,b20,c20,333222333所以abc3,a2b2c231113331即abc2,所以abc,当且仅当a2b2c2,即abc3时取等号.399(2)证明:因为a0,b0,c0,所以bc2bc,ac2ac,ab2ab,333aaa2bbb2ccc2所以,,bc2bc2abcac2ac2abcab2ab2abc333333abca2b2c2a2b2c21bcacab2abc2abc2abc2abc2abc当且仅当abc时取等号.
简介:2022年普通高等学校招生全国统一考试(全国乙卷)数学(理科)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集U{1,2,3,4,5},集合M满足ðM{1,3},则()UA.2MB.3MC.4MD.5M2.已知z12i,且zazb0,其中a,b为实数,则()A.a1,b2B.a1,b2C.a1,b2D.a1,b23.已知向量a,b满足|a|1,|b|3,|a2b|3,则ab()A.2B.1C.1D.24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的1人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列bn:b11,111b21,b31,…,依此类推,其中kN(k1,2,).则11111223()A.bbB.bbC.bbD.bb1538624725.设F为抛物线C:y4x的焦点,点A在C上,点B(3,0),若|AF||BF|,则|AB|()A.2B.22C.3D.326.执行下边的程序框图,输出的n() A.3B.4C.5D.67.在正方体ABCDABCD中,E,F分别为AB,BC的中点,则()1111A.平面BEF平面BDDB.平面BEF平面ABD1111C.平面BEF∥平面AACD.平面BEF∥平面ACD111118.已知等比数列an的前3项和为168,a2a542,则a6()A.14B.12C.6D.39.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()1132A.B.C.D.323210.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p,p,p,且ppp0.记该棋手连胜两盘的概率为123321p,则()A.p与该棋手和甲、乙、丙的此赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大11.双曲线C的两个焦点为F,F,以C的实轴为直径的圆记为D,过F作D的切线与C1213交于M,N两点,且cosFNF,则C的离心率为()125531317A.B.C.D.222212.已知函数f(x),g(x)的定义域均为R,且f(x)g(2x)5,g(x)f(x4)7.若22yg(x)的图像关于直线x2对称,g(2)4,则f(k)()k1A.21B.22C.23D.24 二、填空题:本题共4小题,每小题5分,共20分.13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.14.过四点(0,0),(4,0),(1,1),(4,2)中的三点的一个圆的方程为____________.315.记函数f(x)cos(x)(0,0)的最小正周期为T,若f(T),2x为f(x)的零点,则的最小值为____________.9×216.己知xx和xx分别是函数f(x)2aex(a0且a1)的极小值点和极大12值点.若xx,则a的取值范围是____________.12三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(AB)sinBsin(CA).222(1)证明:2abc;25(2)若a5,cosA,求△ABC的周长.3118.(2分)如图,四面体ABCD中,ADCD,ADCD,ADBBDC,E为AC的中点.(1)证明:平面BED平面ACD;(2)设ABBD2,ACB60,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.19.(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量, 2随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m)和材积量(单位:3m),得到如下数据:样本号i12345678910总和根部横截面积x0.040.060.040.080.080.050.050.070.070.060.6i材积量y0.250.400.220.540.510.340.360.460.420.403.9i10101022并计算得xi0.038,yi1.6158,xiyi0.2474.i=1i=1i=1(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积2总和为186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.n(xix)(yiy)i=1附:相关系数r,1.8961.377.nn22(xix)(yiy)i=1i=120.(12分)3已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A0,2,B,1两点.2(1)求E的方程;(2)设过点P1,2的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足MTTH.证明:直线HN过定点.21.(12分)x已知函数fxln1xaxe.(1)当a1时,求曲线yfx在点0,f0处的切线方程;(2)若fx在区间1,0,0,各恰有一个零点,求a的取值范围.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)x3cos2t,在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点为极y2sint 点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为sinm0.3(1)写出l的直角坐标方程;(2)若l与C有公共点,求m的取值范围.23.[选修4-5:不等式选讲](10分)333已知a,b,c都是正数,且a2b2c21,证明:1(1)abc;9abc1(2).bcacab2abc2022年普通高等学校招生全国统一考试数学(理科)参考答案注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.A3.C.4.D5.B6.B7.A8.D9.C10.D11.C12.D二、填空题:本题共4小题,每小题5分,共20分.313.10222222476514.x2y313或x2y15或xy或339282169xy1;52515.3116.,1e 三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(1)证明:因为sinCsinABsinBsinCA,所以sinCsinAcosBsinCsinBcosAsinBsinCcosAsinBsinAcosC,222222222acbbcaabc所以ac2bcab,2ac2bc2ab222222acb222abc即bca,22所以222;2abc(2)25解:因为a5,cosA,31由(1)得22,bc50222由余弦定理可得abc2bccosA,50则50bc25,3131所以bc,2222故bcbc2bc503181,所以bc9,所以ABC的周长为abc14.18.(1)因为ADCD,E为AC的中点,所以ACDE;在△ABD和CBD中,因为ADCD,ADBCDB,DBDB,所以△ABD≌△CBD,所以ABCB,又因为E为AC的中点,所以ACBE;又因为DE,BE平面BED,DEBEE,所以AC平面BED, 因为AC平面ACD,所以平面BED平面ACD.(2)连接EF,由(1)知,AC平面BED,因为EF平面BED,1所以ACEF,所以S=ACEF,△AFC2当EFBD时,EF最小,即△AFC的面积最小.因为△ABD≌△CBD,所以CBAB2,又因为ACB60,所以ABC是等边三角形,因为E为AC的中点,所以AEEC1,BE3,1因为ADCD,所以DEAC1,2在DEB中,222,所以.DEBEBDBEDE以E为坐标原点建立如图所示的空间直角坐标系Exyz,则A1,0,0,B0,3,0,D0,0,1,所以AD1,0,1,AB1,3,0,设平面ABD的一个法向量为nx,y,z,nADxz0则,取y3,则n3,3,3,nABx3y03333又因为C1,0,0,F0,,,所以CF1,,,4444nCF643cosn,CF所以nCF77,214设CF与平面ABD所成的角的正弦值为0,243所以sincosn,CF,743所以CF与平面ABD所成的角的正弦值为.7 19.(1)0.6样本中10棵这种树木的根部横截面积的平均值x0.06103.9样本中10棵这种树木的材积量的平均值y0.39102据此可估计该林区这种树木平均一棵的根部横截面积为0.06m,平均一棵的材积量为30.39m(2)1010xixyiyxiyi10xyi=1i=1r10101010xx2yy2x2x2y2y2iii10i10i=1i=1i=1i=10.2474100.060.390.01340.01340.97(0.038100.062)(1.6158100.392)0.00018960.01377则r0.97(3)设该林区这种树木的总材积量的估计值为3,Ym又已知树木的材积量与其根部横截面积近似成正比,0.06186可得=,解之得3.Y=1209m0.39Y则该林区这种树木的总材积量估计为31209m20. (1)223解:设椭圆E的方程为mxny1,过A0,2,B,1,24n111则9,解得m,n,mn134422yx所以椭圆E的方程为:1.43(2)32A(0,2),B(,1),所以AB:y2x,2322xy①若过点P(1,2)的直线斜率不存在,直线x1.代入1,3426262可得M(1,),N(1,),代入AB方程yx2,可得3332626T(63,),由MTTH得到H(265,).求得HN方程:3326y(2)x2,过点(0,2).3②若过点P(1,2)的直线斜率存在,设kxy(k2)0,M(x1,y1),N(x2,y2).kxy(k2)022,22联立xy得(3k4)x6k(2k)x3k(k4)0,1346k(2k)8(2k)x1x22y1y223k43k4可得,,2xx3k(4k)4(44k2k)122y2y223k43k424k且xyxy(*)122123k4yy13y2,1联立可得T(3,y1),H(3y16x1,y1).yx223yy12可求得此时HN:yy2(xx2),3y6xx112将(0,2),代入整理得2(x1x2)6(y1y2)x1y2x2y13y1y2120, 222将(*)代入,得24k12k9648k24k4848k24k36k480,显然成立,综上,可得直线HN过定点(0,2).21.(1)f(x)的定义域为(1,)x当a1时,f(x)ln(1x),f(0)0,所以切点为xe11x(0,0)f(x),f(0)2,所以切线斜率为2×1xe所以曲线yf(x)在点(0,f(0))处的切线方程为y2x(2)axf(x)ln(1x)xex21a(1x)ea1xf(x)xx1xe(1x)ex2设g(x)ea1xx(1,0),g(x)exa1x20f(x)01若a0,当,即所以f(x)在(1,0)上单调递增,f(x)f(0)0故f(x)在(1,0)上没有零点,不合题意若1„a„0,当x(0,),则g(x)ex2ax02所以g(x)在(0,)上单调递增所以g(x)g(0)1a…0,即f(x)0所以f(x)在(0,)上单调递增,f(x)f(0)0故f(x)在(0,)上没有零点,不合题意a13若x(1)当x(0,),则g(x)e2ax0,所以g(x)在(0,)上单调递增g(0)1a0,g(1)e0所以存在m(0,1),使得g(m)0,即f(m)0当x(0,m),f(x)0,f(x)单调递减 当x(m,),f(x)0,f(x)单调递增所以当x(0,m),f(x)f(0)0当x,f(x)所以f(x)在(m,)上有唯一零点又(0,m)没有零点,即f(x)在(0,)上有唯一零点x2(2)当x(1,0),g(x)ea1xx设h(x)g(x)e2axxh(x)e2a0所以g(x)在(1,0)单调递增1g(1)2a0,g(0)10e所以存在n(1,0),使得g(n)0当x(1,n),g(x)0,g(x)单调递减当x(n,0),g(x)0,g(x)单调递增,g(x)g(0)1a01又g(1)0e所以存在t(1,n),使得g(t)0,即f(t)0当x(1,t),f(x)单调递增,当x(t,0),f(x)单调递减有x1,f(x)而f(0)0,所以当x(t,0),f(x)0所以f(x)在(1,t)上有唯一零点,(t,0)上无零点即f(x)在(1,0)上有唯一零点所以a1,符合题意所以若f(x)在区间(1,0),(0,)各恰有一个零点,求的取值范围为a(,1) (二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(1)13因为l:sinm0,所以sincosm0,32213又因为siny,cosx,所以化简为yxm0,22整理得l的直角坐标方程:3xy2m0(2)联立l与C的方程,即将x3cos2t,y2sint代入3xy2m0中,可得3cos2t2sint2m0,2所以3(12sint)2sint2m0,2化简为6sint2sint32m0,2要使l与C有公共点,则2m6sint2sint3有解,2令sinta,则a1,1,令f(a)6a2a3,(1≤a≤1),1对称轴为a,开口向上,6所以f(a)maxf(1)6235,11219f(a)f()3,min6666 19所以2m56195m的取值范围为m.122[选修4-5:不等式选讲]23.(1)333证明:因为a0,b0,c0,则a20,b20,c20,333222333所以abc3,a2b2c231113331即abc2,所以abc,当且仅当a2b2c2,即abc3时取等号.399(2)证明:因为a0,b0,c0,所以bc2bc,ac2ac,ab2ab,333aaa2bbb2ccc2所以,,bc2bc2abcac2ac2abcab2ab2abc333333abca2b2c2a2b2c21bcacab2abc2abc2abc2abc2abc当且仅当abc时取等号.
简介:2022年普通高等学校招生全国统一考试(全国乙卷)数学(理科)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集U{1,2,3,4,5},集合M满足ðM{1,3},则()UA.2MB.3MC.4MD.5M2.已知z12i,且zazb0,其中a,b为实数,则()A.a1,b2B.a1,b2C.a1,b2D.a1,b23.已知向量a,b满足|a|1,|b|3,|a2b|3,则ab()A.2B.1C.1D.24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的1人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列bn:b11,111b21,b31,…,依此类推,其中kN(k1,2,).则11111223()A.bbB.bbC.bbD.bb1538624725.设F为抛物线C:y4x的焦点,点A在C上,点B(3,0),若|AF||BF|,则|AB|()A.2B.22C.3D.326.执行下边的程序框图,输出的n() A.3B.4C.5D.67.在正方体ABCDABCD中,E,F分别为AB,BC的中点,则()1111A.平面BEF平面BDDB.平面BEF平面ABD1111C.平面BEF∥平面AACD.平面BEF∥平面ACD111118.已知等比数列an的前3项和为168,a2a542,则a6()A.14B.12C.6D.39.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()1132A.B.C.D.323210.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p,p,p,且ppp0.记该棋手连胜两盘的概率为123321p,则()A.p与该棋手和甲、乙、丙的此赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大11.双曲线C的两个焦点为F,F,以C的实轴为直径的圆记为D,过F作D的切线与C1213交于M,N两点,且cosFNF,则C的离心率为()125531317A.B.C.D.222212.已知函数f(x),g(x)的定义域均为R,且f(x)g(2x)5,g(x)f(x4)7.若22yg(x)的图像关于直线x2对称,g(2)4,则f(k)()k1A.21B.22C.23D.24 二、填空题:本题共4小题,每小题5分,共20分.13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.14.过四点(0,0),(4,0),(1,1),(4,2)中的三点的一个圆的方程为____________.315.记函数f(x)cos(x)(0,0)的最小正周期为T,若f(T),2x为f(x)的零点,则的最小值为____________.9×216.己知xx和xx分别是函数f(x)2aex(a0且a1)的极小值点和极大12值点.若xx,则a的取值范围是____________.12三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(AB)sinBsin(CA).222(1)证明:2abc;25(2)若a5,cosA,求△ABC的周长.3118.(2分)如图,四面体ABCD中,ADCD,ADCD,ADBBDC,E为AC的中点.(1)证明:平面BED平面ACD;(2)设ABBD2,ACB60,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.19.(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量, 2随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m)和材积量(单位:3m),得到如下数据:样本号i12345678910总和根部横截面积x0.040.060.040.080.080.050.050.070.070.060.6i材积量y0.250.400.220.540.510.340.360.460.420.403.9i10101022并计算得xi0.038,yi1.6158,xiyi0.2474.i=1i=1i=1(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积2总和为186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.n(xix)(yiy)i=1附:相关系数r,1.8961.377.nn22(xix)(yiy)i=1i=120.(12分)3已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A0,2,B,1两点.2(1)求E的方程;(2)设过点P1,2的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足MTTH.证明:直线HN过定点.21.(12分)x已知函数fxln1xaxe.(1)当a1时,求曲线yfx在点0,f0处的切线方程;(2)若fx在区间1,0,0,各恰有一个零点,求a的取值范围.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)x3cos2t,在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点为极y2sint 点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为sinm0.3(1)写出l的直角坐标方程;(2)若l与C有公共点,求m的取值范围.23.[选修4-5:不等式选讲](10分)333已知a,b,c都是正数,且a2b2c21,证明:1(1)abc;9abc1(2).bcacab2abc2022年普通高等学校招生全国统一考试数学(理科)参考答案注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.A3.C.4.D5.B6.B7.A8.D9.C10.D11.C12.D二、填空题:本题共4小题,每小题5分,共20分.313.10222222476514.x2y313或x2y15或xy或339282169xy1;52515.3116.,1e 三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(1)证明:因为sinCsinABsinBsinCA,所以sinCsinAcosBsinCsinBcosAsinBsinCcosAsinBsinAcosC,222222222acbbcaabc所以ac2bcab,2ac2bc2ab222222acb222abc即bca,22所以222;2abc(2)25解:因为a5,cosA,31由(1)得22,bc50222由余弦定理可得abc2bccosA,50则50bc25,3131所以bc,2222故bcbc2bc503181,所以bc9,所以ABC的周长为abc14.18.(1)因为ADCD,E为AC的中点,所以ACDE;在△ABD和CBD中,因为ADCD,ADBCDB,DBDB,所以△ABD≌△CBD,所以ABCB,又因为E为AC的中点,所以ACBE;又因为DE,BE平面BED,DEBEE,所以AC平面BED, 因为AC平面ACD,所以平面BED平面ACD.(2)连接EF,由(1)知,AC平面BED,因为EF平面BED,1所以ACEF,所以S=ACEF,△AFC2当EFBD时,EF最小,即△AFC的面积最小.因为△ABD≌△CBD,所以CBAB2,又因为ACB60,所以ABC是等边三角形,因为E为AC的中点,所以AEEC1,BE3,1因为ADCD,所以DEAC1,2在DEB中,222,所以.DEBEBDBEDE以E为坐标原点建立如图所示的空间直角坐标系Exyz,则A1,0,0,B0,3,0,D0,0,1,所以AD1,0,1,AB1,3,0,设平面ABD的一个法向量为nx,y,z,nADxz0则,取y3,则n3,3,3,nABx3y03333又因为C1,0,0,F0,,,所以CF1,,,4444nCF643cosn,CF所以nCF77,214设CF与平面ABD所成的角的正弦值为0,243所以sincosn,CF,743所以CF与平面ABD所成的角的正弦值为.7 19.(1)0.6样本中10棵这种树木的根部横截面积的平均值x0.06103.9样本中10棵这种树木的材积量的平均值y0.39102据此可估计该林区这种树木平均一棵的根部横截面积为0.06m,平均一棵的材积量为30.39m(2)1010xixyiyxiyi10xyi=1i=1r10101010xx2yy2x2x2y2y2iii10i10i=1i=1i=1i=10.2474100.060.390.01340.01340.97(0.038100.062)(1.6158100.392)0.00018960.01377则r0.97(3)设该林区这种树木的总材积量的估计值为3,Ym又已知树木的材积量与其根部横截面积近似成正比,0.06186可得=,解之得3.Y=1209m0.39Y则该林区这种树木的总材积量估计为31209m20. (1)223解:设椭圆E的方程为mxny1,过A0,2,B,1,24n111则9,解得m,n,mn134422yx所以椭圆E的方程为:1.43(2)32A(0,2),B(,1),所以AB:y2x,2322xy①若过点P(1,2)的直线斜率不存在,直线x1.代入1,3426262可得M(1,),N(1,),代入AB方程yx2,可得3332626T(63,),由MTTH得到H(265,).求得HN方程:3326y(2)x2,过点(0,2).3②若过点P(1,2)的直线斜率存在,设kxy(k2)0,M(x1,y1),N(x2,y2).kxy(k2)022,22联立xy得(3k4)x6k(2k)x3k(k4)0,1346k(2k)8(2k)x1x22y1y223k43k4可得,,2xx3k(4k)4(44k2k)122y2y223k43k424k且xyxy(*)122123k4yy13y2,1联立可得T(3,y1),H(3y16x1,y1).yx223yy12可求得此时HN:yy2(xx2),3y6xx112将(0,2),代入整理得2(x1x2)6(y1y2)x1y2x2y13y1y2120, 222将(*)代入,得24k12k9648k24k4848k24k36k480,显然成立,综上,可得直线HN过定点(0,2).21.(1)f(x)的定义域为(1,)x当a1时,f(x)ln(1x),f(0)0,所以切点为xe11x(0,0)f(x),f(0)2,所以切线斜率为2×1xe所以曲线yf(x)在点(0,f(0))处的切线方程为y2x(2)axf(x)ln(1x)xex21a(1x)ea1xf(x)xx1xe(1x)ex2设g(x)ea1xx(1,0),g(x)exa1x20f(x)01若a0,当,即所以f(x)在(1,0)上单调递增,f(x)f(0)0故f(x)在(1,0)上没有零点,不合题意若1„a„0,当x(0,),则g(x)ex2ax02所以g(x)在(0,)上单调递增所以g(x)g(0)1a…0,即f(x)0所以f(x)在(0,)上单调递增,f(x)f(0)0故f(x)在(0,)上没有零点,不合题意a13若x(1)当x(0,),则g(x)e2ax0,所以g(x)在(0,)上单调递增g(0)1a0,g(1)e0所以存在m(0,1),使得g(m)0,即f(m)0当x(0,m),f(x)0,f(x)单调递减 当x(m,),f(x)0,f(x)单调递增所以当x(0,m),f(x)f(0)0当x,f(x)所以f(x)在(m,)上有唯一零点又(0,m)没有零点,即f(x)在(0,)上有唯一零点x2(2)当x(1,0),g(x)ea1xx设h(x)g(x)e2axxh(x)e2a0所以g(x)在(1,0)单调递增1g(1)2a0,g(0)10e所以存在n(1,0),使得g(n)0当x(1,n),g(x)0,g(x)单调递减当x(n,0),g(x)0,g(x)单调递增,g(x)g(0)1a01又g(1)0e所以存在t(1,n),使得g(t)0,即f(t)0当x(1,t),f(x)单调递增,当x(t,0),f(x)单调递减有x1,f(x)而f(0)0,所以当x(t,0),f(x)0所以f(x)在(1,t)上有唯一零点,(t,0)上无零点即f(x)在(1,0)上有唯一零点所以a1,符合题意所以若f(x)在区间(1,0),(0,)各恰有一个零点,求的取值范围为a(,1) (二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(1)13因为l:sinm0,所以sincosm0,32213又因为siny,cosx,所以化简为yxm0,22整理得l的直角坐标方程:3xy2m0(2)联立l与C的方程,即将x3cos2t,y2sint代入3xy2m0中,可得3cos2t2sint2m0,2所以3(12sint)2sint2m0,2化简为6sint2sint32m0,2要使l与C有公共点,则2m6sint2sint3有解,2令sinta,则a1,1,令f(a)6a2a3,(1≤a≤1),1对称轴为a,开口向上,6所以f(a)maxf(1)6235,11219f(a)f()3,min6666 19所以2m56195m的取值范围为m.122[选修4-5:不等式选讲]23.(1)333证明:因为a0,b0,c0,则a20,b20,c20,333222333所以abc3,a2b2c231113331即abc2,所以abc,当且仅当a2b2c2,即abc3时取等号.399(2)证明:因为a0,b0,c0,所以bc2bc,ac2ac,ab2ab,333aaa2bbb2ccc2所以,,bc2bc2abcac2ac2abcab2ab2abc333333abca2b2c2a2b2c21bcacab2abc2abc2abc2abc2abc当且仅当abc时取等号.
简介:2022年普通高等学校招生全国统一考试(全国乙卷)数学(理科)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集U{1,2,3,4,5},集合M满足ðM{1,3},则()UA.2MB.3MC.4MD.5M2.已知z12i,且zazb0,其中a,b为实数,则()A.a1,b2B.a1,b2C.a1,b2D.a1,b23.已知向量a,b满足|a|1,|b|3,|a2b|3,则ab()A.2B.1C.1D.24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的1人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列bn:b11,111b21,b31,…,依此类推,其中kN(k1,2,).则11111223()A.bbB.bbC.bbD.bb1538624725.设F为抛物线C:y4x的焦点,点A在C上,点B(3,0),若|AF||BF|,则|AB|()A.2B.22C.3D.326.执行下边的程序框图,输出的n() A.3B.4C.5D.67.在正方体ABCDABCD中,E,F分别为AB,BC的中点,则()1111A.平面BEF平面BDDB.平面BEF平面ABD1111C.平面BEF∥平面AACD.平面BEF∥平面ACD111118.已知等比数列an的前3项和为168,a2a542,则a6()A.14B.12C.6D.39.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()1132A.B.C.D.323210.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p,p,p,且ppp0.记该棋手连胜两盘的概率为123321p,则()A.p与该棋手和甲、乙、丙的此赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大11.双曲线C的两个焦点为F,F,以C的实轴为直径的圆记为D,过F作D的切线与C1213交于M,N两点,且cosFNF,则C的离心率为()125531317A.B.C.D.222212.已知函数f(x),g(x)的定义域均为R,且f(x)g(2x)5,g(x)f(x4)7.若22yg(x)的图像关于直线x2对称,g(2)4,则f(k)()k1A.21B.22C.23D.24 二、填空题:本题共4小题,每小题5分,共20分.13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.14.过四点(0,0),(4,0),(1,1),(4,2)中的三点的一个圆的方程为____________.315.记函数f(x)cos(x)(0,0)的最小正周期为T,若f(T),2x为f(x)的零点,则的最小值为____________.9×216.己知xx和xx分别是函数f(x)2aex(a0且a1)的极小值点和极大12值点.若xx,则a的取值范围是____________.12三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(AB)sinBsin(CA).222(1)证明:2abc;25(2)若a5,cosA,求△ABC的周长.3118.(2分)如图,四面体ABCD中,ADCD,ADCD,ADBBDC,E为AC的中点.(1)证明:平面BED平面ACD;(2)设ABBD2,ACB60,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.19.(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量, 2随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m)和材积量(单位:3m),得到如下数据:样本号i12345678910总和根部横截面积x0.040.060.040.080.080.050.050.070.070.060.6i材积量y0.250.400.220.540.510.340.360.460.420.403.9i10101022并计算得xi0.038,yi1.6158,xiyi0.2474.i=1i=1i=1(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积2总和为186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.n(xix)(yiy)i=1附:相关系数r,1.8961.377.nn22(xix)(yiy)i=1i=120.(12分)3已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A0,2,B,1两点.2(1)求E的方程;(2)设过点P1,2的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足MTTH.证明:直线HN过定点.21.(12分)x已知函数fxln1xaxe.(1)当a1时,求曲线yfx在点0,f0处的切线方程;(2)若fx在区间1,0,0,各恰有一个零点,求a的取值范围.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)x3cos2t,在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点为极y2sint 点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为sinm0.3(1)写出l的直角坐标方程;(2)若l与C有公共点,求m的取值范围.23.[选修4-5:不等式选讲](10分)333已知a,b,c都是正数,且a2b2c21,证明:1(1)abc;9abc1(2).bcacab2abc2022年普通高等学校招生全国统一考试数学(理科)参考答案注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.A3.C.4.D5.B6.B7.A8.D9.C10.D11.C12.D二、填空题:本题共4小题,每小题5分,共20分.313.10222222476514.x2y313或x2y15或xy或339282169xy1;52515.3116.,1e 三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(1)证明:因为sinCsinABsinBsinCA,所以sinCsinAcosBsinCsinBcosAsinBsinCcosAsinBsinAcosC,222222222acbbcaabc所以ac2bcab,2ac2bc2ab222222acb222abc即bca,22所以222;2abc(2)25解:因为a5,cosA,31由(1)得22,bc50222由余弦定理可得abc2bccosA,50则50bc25,3131所以bc,2222故bcbc2bc503181,所以bc9,所以ABC的周长为abc14.18.(1)因为ADCD,E为AC的中点,所以ACDE;在△ABD和CBD中,因为ADCD,ADBCDB,DBDB,所以△ABD≌△CBD,所以ABCB,又因为E为AC的中点,所以ACBE;又因为DE,BE平面BED,DEBEE,所以AC平面BED, 因为AC平面ACD,所以平面BED平面ACD.(2)连接EF,由(1)知,AC平面BED,因为EF平面BED,1所以ACEF,所以S=ACEF,△AFC2当EFBD时,EF最小,即△AFC的面积最小.因为△ABD≌△CBD,所以CBAB2,又因为ACB60,所以ABC是等边三角形,因为E为AC的中点,所以AEEC1,BE3,1因为ADCD,所以DEAC1,2在DEB中,222,所以.DEBEBDBEDE以E为坐标原点建立如图所示的空间直角坐标系Exyz,则A1,0,0,B0,3,0,D0,0,1,所以AD1,0,1,AB1,3,0,设平面ABD的一个法向量为nx,y,z,nADxz0则,取y3,则n3,3,3,nABx3y03333又因为C1,0,0,F0,,,所以CF1,,,4444nCF643cosn,CF所以nCF77,214设CF与平面ABD所成的角的正弦值为0,243所以sincosn,CF,743所以CF与平面ABD所成的角的正弦值为.7 19.(1)0.6样本中10棵这种树木的根部横截面积的平均值x0.06103.9样本中10棵这种树木的材积量的平均值y0.39102据此可估计该林区这种树木平均一棵的根部横截面积为0.06m,平均一棵的材积量为30.39m(2)1010xixyiyxiyi10xyi=1i=1r10101010xx2yy2x2x2y2y2iii10i10i=1i=1i=1i=10.2474100.060.390.01340.01340.97(0.038100.062)(1.6158100.392)0.00018960.01377则r0.97(3)设该林区这种树木的总材积量的估计值为3,Ym又已知树木的材积量与其根部横截面积近似成正比,0.06186可得=,解之得3.Y=1209m0.39Y则该林区这种树木的总材积量估计为31209m20. (1)223解:设椭圆E的方程为mxny1,过A0,2,B,1,24n111则9,解得m,n,mn134422yx所以椭圆E的方程为:1.43(2)32A(0,2),B(,1),所以AB:y2x,2322xy①若过点P(1,2)的直线斜率不存在,直线x1.代入1,3426262可得M(1,),N(1,),代入AB方程yx2,可得3332626T(63,),由MTTH得到H(265,).求得HN方程:3326y(2)x2,过点(0,2).3②若过点P(1,2)的直线斜率存在,设kxy(k2)0,M(x1,y1),N(x2,y2).kxy(k2)022,22联立xy得(3k4)x6k(2k)x3k(k4)0,1346k(2k)8(2k)x1x22y1y223k43k4可得,,2xx3k(4k)4(44k2k)122y2y223k43k424k且xyxy(*)122123k4yy13y2,1联立可得T(3,y1),H(3y16x1,y1).yx223yy12可求得此时HN:yy2(xx2),3y6xx112将(0,2),代入整理得2(x1x2)6(y1y2)x1y2x2y13y1y2120, 222将(*)代入,得24k12k9648k24k4848k24k36k480,显然成立,综上,可得直线HN过定点(0,2).21.(1)f(x)的定义域为(1,)x当a1时,f(x)ln(1x),f(0)0,所以切点为xe11x(0,0)f(x),f(0)2,所以切线斜率为2×1xe所以曲线yf(x)在点(0,f(0))处的切线方程为y2x(2)axf(x)ln(1x)xex21a(1x)ea1xf(x)xx1xe(1x)ex2设g(x)ea1xx(1,0),g(x)exa1x20f(x)01若a0,当,即所以f(x)在(1,0)上单调递增,f(x)f(0)0故f(x)在(1,0)上没有零点,不合题意若1„a„0,当x(0,),则g(x)ex2ax02所以g(x)在(0,)上单调递增所以g(x)g(0)1a…0,即f(x)0所以f(x)在(0,)上单调递增,f(x)f(0)0故f(x)在(0,)上没有零点,不合题意a13若x(1)当x(0,),则g(x)e2ax0,所以g(x)在(0,)上单调递增g(0)1a0,g(1)e0所以存在m(0,1),使得g(m)0,即f(m)0当x(0,m),f(x)0,f(x)单调递减 当x(m,),f(x)0,f(x)单调递增所以当x(0,m),f(x)f(0)0当x,f(x)所以f(x)在(m,)上有唯一零点又(0,m)没有零点,即f(x)在(0,)上有唯一零点x2(2)当x(1,0),g(x)ea1xx设h(x)g(x)e2axxh(x)e2a0所以g(x)在(1,0)单调递增1g(1)2a0,g(0)10e所以存在n(1,0),使得g(n)0当x(1,n),g(x)0,g(x)单调递减当x(n,0),g(x)0,g(x)单调递增,g(x)g(0)1a01又g(1)0e所以存在t(1,n),使得g(t)0,即f(t)0当x(1,t),f(x)单调递增,当x(t,0),f(x)单调递减有x1,f(x)而f(0)0,所以当x(t,0),f(x)0所以f(x)在(1,t)上有唯一零点,(t,0)上无零点即f(x)在(1,0)上有唯一零点所以a1,符合题意所以若f(x)在区间(1,0),(0,)各恰有一个零点,求的取值范围为a(,1) (二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(1)13因为l:sinm0,所以sincosm0,32213又因为siny,cosx,所以化简为yxm0,22整理得l的直角坐标方程:3xy2m0(2)联立l与C的方程,即将x3cos2t,y2sint代入3xy2m0中,可得3cos2t2sint2m0,2所以3(12sint)2sint2m0,2化简为6sint2sint32m0,2要使l与C有公共点,则2m6sint2sint3有解,2令sinta,则a1,1,令f(a)6a2a3,(1≤a≤1),1对称轴为a,开口向上,6所以f(a)maxf(1)6235,11219f(a)f()3,min6666 19所以2m56195m的取值范围为m.122[选修4-5:不等式选讲]23.(1)333证明:因为a0,b0,c0,则a20,b20,c20,333222333所以abc3,a2b2c231113331即abc2,所以abc,当且仅当a2b2c2,即abc3时取等号.399(2)证明:因为a0,b0,c0,所以bc2bc,ac2ac,ab2ab,333aaa2bbb2ccc2所以,,bc2bc2abcac2ac2abcab2ab2abc333333abca2b2c2a2b2c21bcacab2abc2abc2abc2abc2abc当且仅当abc时取等号.