浙江省宁波市2022年中考数学试卷解析版

浙江省丽水市2022年中考数学试卷及答案

浙江省丽水市2022年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.实数2的相反数是(  )A.2B.12C.﹣12D.﹣22.如图是运动会领奖台,它的主视图是(  )A.B.C.D.3.老师从甲、乙、丙、丁四位同学中任

浙江省宁波市2022年中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.-2022的相反数是(  )A.2022B.−12022C.-2022D.12022【答案】A【知识点】相反数及有理数的

简介:浙江省宁波市2022年中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.-2022的相反数是(  )A.2022B.−12022C.-2022D.120222.下列计算正确的是(  )A.a3+a=a4B.a6÷a2=a3C.(a2)3=a5D.a3·a=a43.据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为(  )A.1.36×107B.13.6×108C.1.36×109D.0.136×10104.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是(  )A.B.C.D.5.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(°C)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为(  )A.36.5°C,36.4°CB.36.5°C,36.5°CC.36.8C,36.4°CD.36.8°C,36.5°C6.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为(  )A.36πcm2B.24πcm2C.16πcm2D.12πcm27.如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为(  )A.22B.3C.23D.48.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗,问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原米有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为(  ) A.x+y=10x+35y=7B.x+y=1035x+y=7C.x+y=7x+35y=10D.x+y=735x+y=109.点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上。若y1 2B.m>32C.m<1D.32 0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为92时,EFOE的值为  ,点F的坐标为  .三、解答题(本大题有8小题,共80分)17.(1)计算:(x+1)(x-1)+x(2-x).(2)解不等式组:4x−3>92+x≥018.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可) (2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.19.如图,正比例函数y=−23x的图象与反比例函数y=kx(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.21.每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系,每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少下克? 23.(1)【基础巩固】如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.24.如图1,⊙O为锐角三角形ABC的外接圆,点D在BC上,AD交BC于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当AB的长为2时,求AC的长.②当OF:OE=4:11时,求cosα的值.答案解析部分1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】A 9.【答案】B10.【答案】C11.【答案】π(答案不唯一)12.【答案】(x-1)213.【答案】51114.【答案】−1215.【答案】32或6516.【答案】12;(332,0)17.【答案】(1)解:原式=x2-1+2x-x2=2x-1(2)解:解不等式①,得x>3,解不等式②,得x≥-2,所以原不等式组的解是x>3.18.【答案】(1)解:答案不唯一。(2)解:如图19.【答案】(1)解:把A(a,2)的坐标代入y=−23x,得2=−23a,解得a=-3,∴A(-3,2),把A(-3,2)的坐标代入y=kx,得2=k−3,解得k=-6,∴反比例函数的表达式为y=−6x;(2)n的范围为n>2或n<-2.20.【答案】(1)解:4+7+10+14+20=55(天),答:这5期的集训共有55天.(2)解:11.72-11.52=0.2(秒).答:第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)解:个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可) 21.【答案】(1)解:在Rt△ABD中,∠ABD=53°,BD=9,∴AB=BDcos∠ABD=9cos53°≈90.6=15(m).答:此时云梯AB的长为15m.(2)解:∵AE=19,DE=BC=2,∴AD=AE-DE=19-2=17.在Rt△ABD中,BD=9,∴AB=AD2+BD2=172+92=370(m),∵370<20,∴在该消防车不移动位置的前提下,云梯能够伸到险情处.22.【答案】(1)解:由题意,y=4-0.5(x-2).∴y=-0.5x+5(2≤x≤8,且x为整数).(2)解:设每平方米小番茄产量为w千克,w=x(-0.5x+5)=-0.5×2+5x=-0.5(x-5)2+12.5.∴当x=5时,w有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.23.【答案】(1)证明:∵DE∥BC,∴△ADG∽△ABF,△AEG∽△ACF.∴DGBF=AGAF,EGCF=AGAF∴DGBF=EGCF∵BF=CF,∴DG=EG.(2)解:由(1)得DG=EG,∵CG⊥DE,∴CE=CD=6.∵AE=3,∴AC=AE+CE=9.∵DE∥BC,∴△ADE∽△ABC.∴DEBC=AEAC=13 (3)解:如图,延长GE交AB于点M,连结FM,作MN⊥BC,垂足为N.在▱ABCD中,BO=DO,∠ABC=∠ADC=45°.∵EG∥BD,∴由(1)得ME=GE,∵EF⊥EG,∴FM=FG=10,∴∠EFM=∠EFG.∵∠EGF=40°,∴∠EFG=50°.∵FG平分∠EFC,∴∠EFG=∠CFG=50°,∴∠BFM=180°-∠EFM-∠EFG-∠CFG=30°.∴在Rt△FMN中,MN=FMsin30°=5,FN=FMcos30°=53,∵∠MBN=45°,MN⊥BN,∴BN=MN=5,∴BF=BN+FN=5+53.24.【答案】(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,∴∠BFD=90°-α2(2)证明:由(1)得∠BFD=90°-α2,∵∠ADB=∠ACB=α,∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.∵BE=FG, ∴△BDE≌△FDG(SAS).(3)解:①∵△BDE≌△FDG,∴∠FDG=∠BDE=α,∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2,∴在△BDG中,∠DBG=180°-∠BDG-∠DGE=90°-3α2∵AD为⊙O的直径,∵∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2∴AC与AB的度数之比为3:2.∴AC与AB的长度之比为3:2,∵AB=2,∴AC=3.②如图,连结BO.∵OB=OD,∴∠OBD=∠ODB=a,:∠BOF=∠OBD+∠ODB=2α.∴∠BDG=2α,∴∠BOF=∠BDG.∵∠BGD=∠BFO=90°-α2,∴△BDG∽△BOF,设△BDG与△BOF的相似比为k,∴DGOF=BDBO=k.∵OFOE=411∴设OF=4x,则OE=11x,DE=DG=4kx,∴OB=OD=OE+DE=11x+4kx,BD=DF=15x+4kx, ∴BDBO=15x+4kx11x+4kx=15+4k11+4k由15+4k11+4k=k,得4k2+7k-15=0,解得k1=54,k2=-3(舍),∴OD=11x+4kx=16x,BD=15x+4kx=20x,∴AD=2OD=32x,在Rt△ABD中,cos∠ADB=BDAD=20x32x=58∴cosα=58
简介:浙江省宁波市2022年中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.-2022的相反数是(  )A.2022B.−12022C.-2022D.120222.下列计算正确的是(  )A.a3+a=a4B.a6÷a2=a3C.(a2)3=a5D.a3·a=a43.据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为(  )A.1.36×107B.13.6×108C.1.36×109D.0.136×10104.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是(  )A.B.C.D.5.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(°C)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为(  )A.36.5°C,36.4°CB.36.5°C,36.5°CC.36.8C,36.4°CD.36.8°C,36.5°C6.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为(  )A.36πcm2B.24πcm2C.16πcm2D.12πcm27.如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为(  )A.22B.3C.23D.48.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗,问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原米有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为(  ) A.x+y=10x+35y=7B.x+y=1035x+y=7C.x+y=7x+35y=10D.x+y=735x+y=109.点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上。若y1 2B.m>32C.m<1D.32 0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为92时,EFOE的值为  ,点F的坐标为  .三、解答题(本大题有8小题,共80分)17.(1)计算:(x+1)(x-1)+x(2-x).(2)解不等式组:4x−3>92+x≥018.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可) (2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.19.如图,正比例函数y=−23x的图象与反比例函数y=kx(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.21.每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系,每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少下克? 23.(1)【基础巩固】如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.24.如图1,⊙O为锐角三角形ABC的外接圆,点D在BC上,AD交BC于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当AB的长为2时,求AC的长.②当OF:OE=4:11时,求cosα的值.答案解析部分1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】A 9.【答案】B10.【答案】C11.【答案】π(答案不唯一)12.【答案】(x-1)213.【答案】51114.【答案】−1215.【答案】32或6516.【答案】12;(332,0)17.【答案】(1)解:原式=x2-1+2x-x2=2x-1(2)解:解不等式①,得x>3,解不等式②,得x≥-2,所以原不等式组的解是x>3.18.【答案】(1)解:答案不唯一。(2)解:如图19.【答案】(1)解:把A(a,2)的坐标代入y=−23x,得2=−23a,解得a=-3,∴A(-3,2),把A(-3,2)的坐标代入y=kx,得2=k−3,解得k=-6,∴反比例函数的表达式为y=−6x;(2)n的范围为n>2或n<-2.20.【答案】(1)解:4+7+10+14+20=55(天),答:这5期的集训共有55天.(2)解:11.72-11.52=0.2(秒).答:第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)解:个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可) 21.【答案】(1)解:在Rt△ABD中,∠ABD=53°,BD=9,∴AB=BDcos∠ABD=9cos53°≈90.6=15(m).答:此时云梯AB的长为15m.(2)解:∵AE=19,DE=BC=2,∴AD=AE-DE=19-2=17.在Rt△ABD中,BD=9,∴AB=AD2+BD2=172+92=370(m),∵370<20,∴在该消防车不移动位置的前提下,云梯能够伸到险情处.22.【答案】(1)解:由题意,y=4-0.5(x-2).∴y=-0.5x+5(2≤x≤8,且x为整数).(2)解:设每平方米小番茄产量为w千克,w=x(-0.5x+5)=-0.5×2+5x=-0.5(x-5)2+12.5.∴当x=5时,w有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.23.【答案】(1)证明:∵DE∥BC,∴△ADG∽△ABF,△AEG∽△ACF.∴DGBF=AGAF,EGCF=AGAF∴DGBF=EGCF∵BF=CF,∴DG=EG.(2)解:由(1)得DG=EG,∵CG⊥DE,∴CE=CD=6.∵AE=3,∴AC=AE+CE=9.∵DE∥BC,∴△ADE∽△ABC.∴DEBC=AEAC=13 (3)解:如图,延长GE交AB于点M,连结FM,作MN⊥BC,垂足为N.在▱ABCD中,BO=DO,∠ABC=∠ADC=45°.∵EG∥BD,∴由(1)得ME=GE,∵EF⊥EG,∴FM=FG=10,∴∠EFM=∠EFG.∵∠EGF=40°,∴∠EFG=50°.∵FG平分∠EFC,∴∠EFG=∠CFG=50°,∴∠BFM=180°-∠EFM-∠EFG-∠CFG=30°.∴在Rt△FMN中,MN=FMsin30°=5,FN=FMcos30°=53,∵∠MBN=45°,MN⊥BN,∴BN=MN=5,∴BF=BN+FN=5+53.24.【答案】(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,∴∠BFD=90°-α2(2)证明:由(1)得∠BFD=90°-α2,∵∠ADB=∠ACB=α,∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.∵BE=FG, ∴△BDE≌△FDG(SAS).(3)解:①∵△BDE≌△FDG,∴∠FDG=∠BDE=α,∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2,∴在△BDG中,∠DBG=180°-∠BDG-∠DGE=90°-3α2∵AD为⊙O的直径,∵∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2∴AC与AB的度数之比为3:2.∴AC与AB的长度之比为3:2,∵AB=2,∴AC=3.②如图,连结BO.∵OB=OD,∴∠OBD=∠ODB=a,:∠BOF=∠OBD+∠ODB=2α.∴∠BDG=2α,∴∠BOF=∠BDG.∵∠BGD=∠BFO=90°-α2,∴△BDG∽△BOF,设△BDG与△BOF的相似比为k,∴DGOF=BDBO=k.∵OFOE=411∴设OF=4x,则OE=11x,DE=DG=4kx,∴OB=OD=OE+DE=11x+4kx,BD=DF=15x+4kx, ∴BDBO=15x+4kx11x+4kx=15+4k11+4k由15+4k11+4k=k,得4k2+7k-15=0,解得k1=54,k2=-3(舍),∴OD=11x+4kx=16x,BD=15x+4kx=20x,∴AD=2OD=32x,在Rt△ABD中,cos∠ADB=BDAD=20x32x=58∴cosα=58
简介:浙江省宁波市2022年中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.-2022的相反数是(  )A.2022B.−12022C.-2022D.120222.下列计算正确的是(  )A.a3+a=a4B.a6÷a2=a3C.(a2)3=a5D.a3·a=a43.据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为(  )A.1.36×107B.13.6×108C.1.36×109D.0.136×10104.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是(  )A.B.C.D.5.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(°C)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为(  )A.36.5°C,36.4°CB.36.5°C,36.5°CC.36.8C,36.4°CD.36.8°C,36.5°C6.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为(  )A.36πcm2B.24πcm2C.16πcm2D.12πcm27.如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为(  )A.22B.3C.23D.48.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗,问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原米有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为(  ) A.x+y=10x+35y=7B.x+y=1035x+y=7C.x+y=7x+35y=10D.x+y=735x+y=109.点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上。若y1 2B.m>32C.m<1D.32 0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为92时,EFOE的值为  ,点F的坐标为  .三、解答题(本大题有8小题,共80分)17.(1)计算:(x+1)(x-1)+x(2-x).(2)解不等式组:4x−3>92+x≥018.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可) (2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.19.如图,正比例函数y=−23x的图象与反比例函数y=kx(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.21.每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系,每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少下克? 23.(1)【基础巩固】如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.24.如图1,⊙O为锐角三角形ABC的外接圆,点D在BC上,AD交BC于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当AB的长为2时,求AC的长.②当OF:OE=4:11时,求cosα的值.答案解析部分1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】A 9.【答案】B10.【答案】C11.【答案】π(答案不唯一)12.【答案】(x-1)213.【答案】51114.【答案】−1215.【答案】32或6516.【答案】12;(332,0)17.【答案】(1)解:原式=x2-1+2x-x2=2x-1(2)解:解不等式①,得x>3,解不等式②,得x≥-2,所以原不等式组的解是x>3.18.【答案】(1)解:答案不唯一。(2)解:如图19.【答案】(1)解:把A(a,2)的坐标代入y=−23x,得2=−23a,解得a=-3,∴A(-3,2),把A(-3,2)的坐标代入y=kx,得2=k−3,解得k=-6,∴反比例函数的表达式为y=−6x;(2)n的范围为n>2或n<-2.20.【答案】(1)解:4+7+10+14+20=55(天),答:这5期的集训共有55天.(2)解:11.72-11.52=0.2(秒).答:第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)解:个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可) 21.【答案】(1)解:在Rt△ABD中,∠ABD=53°,BD=9,∴AB=BDcos∠ABD=9cos53°≈90.6=15(m).答:此时云梯AB的长为15m.(2)解:∵AE=19,DE=BC=2,∴AD=AE-DE=19-2=17.在Rt△ABD中,BD=9,∴AB=AD2+BD2=172+92=370(m),∵370<20,∴在该消防车不移动位置的前提下,云梯能够伸到险情处.22.【答案】(1)解:由题意,y=4-0.5(x-2).∴y=-0.5x+5(2≤x≤8,且x为整数).(2)解:设每平方米小番茄产量为w千克,w=x(-0.5x+5)=-0.5×2+5x=-0.5(x-5)2+12.5.∴当x=5时,w有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.23.【答案】(1)证明:∵DE∥BC,∴△ADG∽△ABF,△AEG∽△ACF.∴DGBF=AGAF,EGCF=AGAF∴DGBF=EGCF∵BF=CF,∴DG=EG.(2)解:由(1)得DG=EG,∵CG⊥DE,∴CE=CD=6.∵AE=3,∴AC=AE+CE=9.∵DE∥BC,∴△ADE∽△ABC.∴DEBC=AEAC=13 (3)解:如图,延长GE交AB于点M,连结FM,作MN⊥BC,垂足为N.在▱ABCD中,BO=DO,∠ABC=∠ADC=45°.∵EG∥BD,∴由(1)得ME=GE,∵EF⊥EG,∴FM=FG=10,∴∠EFM=∠EFG.∵∠EGF=40°,∴∠EFG=50°.∵FG平分∠EFC,∴∠EFG=∠CFG=50°,∴∠BFM=180°-∠EFM-∠EFG-∠CFG=30°.∴在Rt△FMN中,MN=FMsin30°=5,FN=FMcos30°=53,∵∠MBN=45°,MN⊥BN,∴BN=MN=5,∴BF=BN+FN=5+53.24.【答案】(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,∴∠BFD=90°-α2(2)证明:由(1)得∠BFD=90°-α2,∵∠ADB=∠ACB=α,∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.∵BE=FG, ∴△BDE≌△FDG(SAS).(3)解:①∵△BDE≌△FDG,∴∠FDG=∠BDE=α,∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2,∴在△BDG中,∠DBG=180°-∠BDG-∠DGE=90°-3α2∵AD为⊙O的直径,∵∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2∴AC与AB的度数之比为3:2.∴AC与AB的长度之比为3:2,∵AB=2,∴AC=3.②如图,连结BO.∵OB=OD,∴∠OBD=∠ODB=a,:∠BOF=∠OBD+∠ODB=2α.∴∠BDG=2α,∴∠BOF=∠BDG.∵∠BGD=∠BFO=90°-α2,∴△BDG∽△BOF,设△BDG与△BOF的相似比为k,∴DGOF=BDBO=k.∵OFOE=411∴设OF=4x,则OE=11x,DE=DG=4kx,∴OB=OD=OE+DE=11x+4kx,BD=DF=15x+4kx, ∴BDBO=15x+4kx11x+4kx=15+4k11+4k由15+4k11+4k=k,得4k2+7k-15=0,解得k1=54,k2=-3(舍),∴OD=11x+4kx=16x,BD=15x+4kx=20x,∴AD=2OD=32x,在Rt△ABD中,cos∠ADB=BDAD=20x32x=58∴cosα=58
简介:浙江省宁波市2022年中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.-2022的相反数是(  )A.2022B.−12022C.-2022D.120222.下列计算正确的是(  )A.a3+a=a4B.a6÷a2=a3C.(a2)3=a5D.a3·a=a43.据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为(  )A.1.36×107B.13.6×108C.1.36×109D.0.136×10104.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是(  )A.B.C.D.5.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(°C)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为(  )A.36.5°C,36.4°CB.36.5°C,36.5°CC.36.8C,36.4°CD.36.8°C,36.5°C6.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为(  )A.36πcm2B.24πcm2C.16πcm2D.12πcm27.如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为(  )A.22B.3C.23D.48.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗,问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原米有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为(  ) A.x+y=10x+35y=7B.x+y=1035x+y=7C.x+y=7x+35y=10D.x+y=735x+y=109.点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上。若y1 2B.m>32C.m<1D.32 0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为92时,EFOE的值为  ,点F的坐标为  .三、解答题(本大题有8小题,共80分)17.(1)计算:(x+1)(x-1)+x(2-x).(2)解不等式组:4x−3>92+x≥018.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可) (2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.19.如图,正比例函数y=−23x的图象与反比例函数y=kx(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.21.每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系,每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少下克? 23.(1)【基础巩固】如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.24.如图1,⊙O为锐角三角形ABC的外接圆,点D在BC上,AD交BC于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当AB的长为2时,求AC的长.②当OF:OE=4:11时,求cosα的值.答案解析部分1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】A 9.【答案】B10.【答案】C11.【答案】π(答案不唯一)12.【答案】(x-1)213.【答案】51114.【答案】−1215.【答案】32或6516.【答案】12;(332,0)17.【答案】(1)解:原式=x2-1+2x-x2=2x-1(2)解:解不等式①,得x>3,解不等式②,得x≥-2,所以原不等式组的解是x>3.18.【答案】(1)解:答案不唯一。(2)解:如图19.【答案】(1)解:把A(a,2)的坐标代入y=−23x,得2=−23a,解得a=-3,∴A(-3,2),把A(-3,2)的坐标代入y=kx,得2=k−3,解得k=-6,∴反比例函数的表达式为y=−6x;(2)n的范围为n>2或n<-2.20.【答案】(1)解:4+7+10+14+20=55(天),答:这5期的集训共有55天.(2)解:11.72-11.52=0.2(秒).答:第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)解:个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可) 21.【答案】(1)解:在Rt△ABD中,∠ABD=53°,BD=9,∴AB=BDcos∠ABD=9cos53°≈90.6=15(m).答:此时云梯AB的长为15m.(2)解:∵AE=19,DE=BC=2,∴AD=AE-DE=19-2=17.在Rt△ABD中,BD=9,∴AB=AD2+BD2=172+92=370(m),∵370<20,∴在该消防车不移动位置的前提下,云梯能够伸到险情处.22.【答案】(1)解:由题意,y=4-0.5(x-2).∴y=-0.5x+5(2≤x≤8,且x为整数).(2)解:设每平方米小番茄产量为w千克,w=x(-0.5x+5)=-0.5×2+5x=-0.5(x-5)2+12.5.∴当x=5时,w有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.23.【答案】(1)证明:∵DE∥BC,∴△ADG∽△ABF,△AEG∽△ACF.∴DGBF=AGAF,EGCF=AGAF∴DGBF=EGCF∵BF=CF,∴DG=EG.(2)解:由(1)得DG=EG,∵CG⊥DE,∴CE=CD=6.∵AE=3,∴AC=AE+CE=9.∵DE∥BC,∴△ADE∽△ABC.∴DEBC=AEAC=13 (3)解:如图,延长GE交AB于点M,连结FM,作MN⊥BC,垂足为N.在▱ABCD中,BO=DO,∠ABC=∠ADC=45°.∵EG∥BD,∴由(1)得ME=GE,∵EF⊥EG,∴FM=FG=10,∴∠EFM=∠EFG.∵∠EGF=40°,∴∠EFG=50°.∵FG平分∠EFC,∴∠EFG=∠CFG=50°,∴∠BFM=180°-∠EFM-∠EFG-∠CFG=30°.∴在Rt△FMN中,MN=FMsin30°=5,FN=FMcos30°=53,∵∠MBN=45°,MN⊥BN,∴BN=MN=5,∴BF=BN+FN=5+53.24.【答案】(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,∴∠BFD=90°-α2(2)证明:由(1)得∠BFD=90°-α2,∵∠ADB=∠ACB=α,∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.∵BE=FG, ∴△BDE≌△FDG(SAS).(3)解:①∵△BDE≌△FDG,∴∠FDG=∠BDE=α,∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2,∴在△BDG中,∠DBG=180°-∠BDG-∠DGE=90°-3α2∵AD为⊙O的直径,∵∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2∴AC与AB的度数之比为3:2.∴AC与AB的长度之比为3:2,∵AB=2,∴AC=3.②如图,连结BO.∵OB=OD,∴∠OBD=∠ODB=a,:∠BOF=∠OBD+∠ODB=2α.∴∠BDG=2α,∴∠BOF=∠BDG.∵∠BGD=∠BFO=90°-α2,∴△BDG∽△BOF,设△BDG与△BOF的相似比为k,∴DGOF=BDBO=k.∵OFOE=411∴设OF=4x,则OE=11x,DE=DG=4kx,∴OB=OD=OE+DE=11x+4kx,BD=DF=15x+4kx, ∴BDBO=15x+4kx11x+4kx=15+4k11+4k由15+4k11+4k=k,得4k2+7k-15=0,解得k1=54,k2=-3(舍),∴OD=11x+4kx=16x,BD=15x+4kx=20x,∴AD=2OD=32x,在Rt△ABD中,cos∠ADB=BDAD=20x32x=58∴cosα=58
简介:浙江省宁波市2022年中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.-2022的相反数是(  )A.2022B.−12022C.-2022D.120222.下列计算正确的是(  )A.a3+a=a4B.a6÷a2=a3C.(a2)3=a5D.a3·a=a43.据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为(  )A.1.36×107B.13.6×108C.1.36×109D.0.136×10104.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是(  )A.B.C.D.5.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(°C)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为(  )A.36.5°C,36.4°CB.36.5°C,36.5°CC.36.8C,36.4°CD.36.8°C,36.5°C6.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为(  )A.36πcm2B.24πcm2C.16πcm2D.12πcm27.如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为(  )A.22B.3C.23D.48.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗,问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原米有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为(  ) A.x+y=10x+35y=7B.x+y=1035x+y=7C.x+y=7x+35y=10D.x+y=735x+y=109.点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上。若y1 2B.m>32C.m<1D.32 0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为92时,EFOE的值为  ,点F的坐标为  .三、解答题(本大题有8小题,共80分)17.(1)计算:(x+1)(x-1)+x(2-x).(2)解不等式组:4x−3>92+x≥018.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可) (2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.19.如图,正比例函数y=−23x的图象与反比例函数y=kx(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.21.每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系,每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少下克? 23.(1)【基础巩固】如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.24.如图1,⊙O为锐角三角形ABC的外接圆,点D在BC上,AD交BC于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当AB的长为2时,求AC的长.②当OF:OE=4:11时,求cosα的值.答案解析部分1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】A 9.【答案】B10.【答案】C11.【答案】π(答案不唯一)12.【答案】(x-1)213.【答案】51114.【答案】−1215.【答案】32或6516.【答案】12;(332,0)17.【答案】(1)解:原式=x2-1+2x-x2=2x-1(2)解:解不等式①,得x>3,解不等式②,得x≥-2,所以原不等式组的解是x>3.18.【答案】(1)解:答案不唯一。(2)解:如图19.【答案】(1)解:把A(a,2)的坐标代入y=−23x,得2=−23a,解得a=-3,∴A(-3,2),把A(-3,2)的坐标代入y=kx,得2=k−3,解得k=-6,∴反比例函数的表达式为y=−6x;(2)n的范围为n>2或n<-2.20.【答案】(1)解:4+7+10+14+20=55(天),答:这5期的集训共有55天.(2)解:11.72-11.52=0.2(秒).答:第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)解:个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可) 21.【答案】(1)解:在Rt△ABD中,∠ABD=53°,BD=9,∴AB=BDcos∠ABD=9cos53°≈90.6=15(m).答:此时云梯AB的长为15m.(2)解:∵AE=19,DE=BC=2,∴AD=AE-DE=19-2=17.在Rt△ABD中,BD=9,∴AB=AD2+BD2=172+92=370(m),∵370<20,∴在该消防车不移动位置的前提下,云梯能够伸到险情处.22.【答案】(1)解:由题意,y=4-0.5(x-2).∴y=-0.5x+5(2≤x≤8,且x为整数).(2)解:设每平方米小番茄产量为w千克,w=x(-0.5x+5)=-0.5×2+5x=-0.5(x-5)2+12.5.∴当x=5时,w有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.23.【答案】(1)证明:∵DE∥BC,∴△ADG∽△ABF,△AEG∽△ACF.∴DGBF=AGAF,EGCF=AGAF∴DGBF=EGCF∵BF=CF,∴DG=EG.(2)解:由(1)得DG=EG,∵CG⊥DE,∴CE=CD=6.∵AE=3,∴AC=AE+CE=9.∵DE∥BC,∴△ADE∽△ABC.∴DEBC=AEAC=13 (3)解:如图,延长GE交AB于点M,连结FM,作MN⊥BC,垂足为N.在▱ABCD中,BO=DO,∠ABC=∠ADC=45°.∵EG∥BD,∴由(1)得ME=GE,∵EF⊥EG,∴FM=FG=10,∴∠EFM=∠EFG.∵∠EGF=40°,∴∠EFG=50°.∵FG平分∠EFC,∴∠EFG=∠CFG=50°,∴∠BFM=180°-∠EFM-∠EFG-∠CFG=30°.∴在Rt△FMN中,MN=FMsin30°=5,FN=FMcos30°=53,∵∠MBN=45°,MN⊥BN,∴BN=MN=5,∴BF=BN+FN=5+53.24.【答案】(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,∴∠BFD=90°-α2(2)证明:由(1)得∠BFD=90°-α2,∵∠ADB=∠ACB=α,∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.∵BE=FG, ∴△BDE≌△FDG(SAS).(3)解:①∵△BDE≌△FDG,∴∠FDG=∠BDE=α,∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2,∴在△BDG中,∠DBG=180°-∠BDG-∠DGE=90°-3α2∵AD为⊙O的直径,∵∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2∴AC与AB的度数之比为3:2.∴AC与AB的长度之比为3:2,∵AB=2,∴AC=3.②如图,连结BO.∵OB=OD,∴∠OBD=∠ODB=a,:∠BOF=∠OBD+∠ODB=2α.∴∠BDG=2α,∴∠BOF=∠BDG.∵∠BGD=∠BFO=90°-α2,∴△BDG∽△BOF,设△BDG与△BOF的相似比为k,∴DGOF=BDBO=k.∵OFOE=411∴设OF=4x,则OE=11x,DE=DG=4kx,∴OB=OD=OE+DE=11x+4kx,BD=DF=15x+4kx, ∴BDBO=15x+4kx11x+4kx=15+4k11+4k由15+4k11+4k=k,得4k2+7k-15=0,解得k1=54,k2=-3(舍),∴OD=11x+4kx=16x,BD=15x+4kx=20x,∴AD=2OD=32x,在Rt△ABD中,cos∠ADB=BDAD=20x32x=58∴cosα=58
简介:浙江省宁波市2022年中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.-2022的相反数是(  )A.2022B.−12022C.-2022D.120222.下列计算正确的是(  )A.a3+a=a4B.a6÷a2=a3C.(a2)3=a5D.a3·a=a43.据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为(  )A.1.36×107B.13.6×108C.1.36×109D.0.136×10104.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是(  )A.B.C.D.5.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(°C)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为(  )A.36.5°C,36.4°CB.36.5°C,36.5°CC.36.8C,36.4°CD.36.8°C,36.5°C6.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为(  )A.36πcm2B.24πcm2C.16πcm2D.12πcm27.如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为(  )A.22B.3C.23D.48.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗,问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原米有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为(  ) A.x+y=10x+35y=7B.x+y=1035x+y=7C.x+y=7x+35y=10D.x+y=735x+y=109.点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上。若y1 2B.m>32C.m<1D.32 0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为92时,EFOE的值为  ,点F的坐标为  .三、解答题(本大题有8小题,共80分)17.(1)计算:(x+1)(x-1)+x(2-x).(2)解不等式组:4x−3>92+x≥018.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可) (2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.19.如图,正比例函数y=−23x的图象与反比例函数y=kx(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.21.每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系,每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少下克? 23.(1)【基础巩固】如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.24.如图1,⊙O为锐角三角形ABC的外接圆,点D在BC上,AD交BC于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当AB的长为2时,求AC的长.②当OF:OE=4:11时,求cosα的值.答案解析部分1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】A 9.【答案】B10.【答案】C11.【答案】π(答案不唯一)12.【答案】(x-1)213.【答案】51114.【答案】−1215.【答案】32或6516.【答案】12;(332,0)17.【答案】(1)解:原式=x2-1+2x-x2=2x-1(2)解:解不等式①,得x>3,解不等式②,得x≥-2,所以原不等式组的解是x>3.18.【答案】(1)解:答案不唯一。(2)解:如图19.【答案】(1)解:把A(a,2)的坐标代入y=−23x,得2=−23a,解得a=-3,∴A(-3,2),把A(-3,2)的坐标代入y=kx,得2=k−3,解得k=-6,∴反比例函数的表达式为y=−6x;(2)n的范围为n>2或n<-2.20.【答案】(1)解:4+7+10+14+20=55(天),答:这5期的集训共有55天.(2)解:11.72-11.52=0.2(秒).答:第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)解:个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可) 21.【答案】(1)解:在Rt△ABD中,∠ABD=53°,BD=9,∴AB=BDcos∠ABD=9cos53°≈90.6=15(m).答:此时云梯AB的长为15m.(2)解:∵AE=19,DE=BC=2,∴AD=AE-DE=19-2=17.在Rt△ABD中,BD=9,∴AB=AD2+BD2=172+92=370(m),∵370<20,∴在该消防车不移动位置的前提下,云梯能够伸到险情处.22.【答案】(1)解:由题意,y=4-0.5(x-2).∴y=-0.5x+5(2≤x≤8,且x为整数).(2)解:设每平方米小番茄产量为w千克,w=x(-0.5x+5)=-0.5×2+5x=-0.5(x-5)2+12.5.∴当x=5时,w有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.23.【答案】(1)证明:∵DE∥BC,∴△ADG∽△ABF,△AEG∽△ACF.∴DGBF=AGAF,EGCF=AGAF∴DGBF=EGCF∵BF=CF,∴DG=EG.(2)解:由(1)得DG=EG,∵CG⊥DE,∴CE=CD=6.∵AE=3,∴AC=AE+CE=9.∵DE∥BC,∴△ADE∽△ABC.∴DEBC=AEAC=13 (3)解:如图,延长GE交AB于点M,连结FM,作MN⊥BC,垂足为N.在▱ABCD中,BO=DO,∠ABC=∠ADC=45°.∵EG∥BD,∴由(1)得ME=GE,∵EF⊥EG,∴FM=FG=10,∴∠EFM=∠EFG.∵∠EGF=40°,∴∠EFG=50°.∵FG平分∠EFC,∴∠EFG=∠CFG=50°,∴∠BFM=180°-∠EFM-∠EFG-∠CFG=30°.∴在Rt△FMN中,MN=FMsin30°=5,FN=FMcos30°=53,∵∠MBN=45°,MN⊥BN,∴BN=MN=5,∴BF=BN+FN=5+53.24.【答案】(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,∴∠BFD=90°-α2(2)证明:由(1)得∠BFD=90°-α2,∵∠ADB=∠ACB=α,∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.∵BE=FG, ∴△BDE≌△FDG(SAS).(3)解:①∵△BDE≌△FDG,∴∠FDG=∠BDE=α,∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2,∴在△BDG中,∠DBG=180°-∠BDG-∠DGE=90°-3α2∵AD为⊙O的直径,∵∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2∴AC与AB的度数之比为3:2.∴AC与AB的长度之比为3:2,∵AB=2,∴AC=3.②如图,连结BO.∵OB=OD,∴∠OBD=∠ODB=a,:∠BOF=∠OBD+∠ODB=2α.∴∠BDG=2α,∴∠BOF=∠BDG.∵∠BGD=∠BFO=90°-α2,∴△BDG∽△BOF,设△BDG与△BOF的相似比为k,∴DGOF=BDBO=k.∵OFOE=411∴设OF=4x,则OE=11x,DE=DG=4kx,∴OB=OD=OE+DE=11x+4kx,BD=DF=15x+4kx, ∴BDBO=15x+4kx11x+4kx=15+4k11+4k由15+4k11+4k=k,得4k2+7k-15=0,解得k1=54,k2=-3(舍),∴OD=11x+4kx=16x,BD=15x+4kx=20x,∴AD=2OD=32x,在Rt△ABD中,cos∠ADB=BDAD=20x32x=58∴cosα=58