2020浙教版八年级数学下册 第6章 反比例函数 单元测试题
2020浙教版八年级数学下册 第6章 反比例函数 单元测试题,八年级下数学单元测试,莲山课件.
第20章 《数据的分析》易错题汇编
一.选择题(共10小题)
1.如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是( )
A.5.2 B.4.6 C.4 D.3.6
2.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )
A.80分 B.82分 C.84分 D.86分
3.如果一组数据x1,x2,…,xn的方差是4,则另一组数据x1+3,x2+3,…,xn+3的方差是( )
A.4 B.7 C.8 D.19
4.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )
A.255分 B.84分 C.84.5分 D.86分
5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
|
甲 |
乙 |
丙 |
丁 |
平均数(cm) |
185 |
180 |
185 |
180 |
方差 |
3.6 |
3.6 |
7.4 |
8.1 |
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
6.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是( )
A.2 B.2.8 C.3 D.3.3
7.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,
甲组12户家庭用水量统计表
用水量(吨) |
4 |
5 |
6 |
9 |
户数 |
4 |
5 |
2 |
1 |
比较5月份两组家庭用水量的中位数,下列说法正确的是( )
A.甲组比乙组大 B.甲、乙两组相同
C.乙组比甲组大 D.无法判断
8.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )
A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m
9.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )
A.94分,96分 B.96分,96分
C.94分,96.4分 D.96分,96.4分
10.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是( )
A.①③ B.①④ C.②③ D.②④
二.填空题(共4小题)
11.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s= (用只含有k的代数式表示).
12.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:
测试项目 |
创新能力 |
综合知识 |
语言表达 |
测试成绩(分数) |
70 |
80 |
92 |
将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是 分.
13.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款 元.
14.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是 mg/L.
三.解答题(共2小题)
15.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.
时间 |
1小时左右 |
1.5小时左右 |
2小时左右 |
2.5小时左右 |
人数 |
50 |
80 |
120 |
50 |
根据以上信息,请回答下列问题:
(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;
(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;
(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)
16.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
|
平均成绩/环 |
中位数/环 |
众数/环 |
方差 |
甲 |
a |
7 |
7 |
1.2 |
乙 |
7 |
b |
8 |
c |
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
试题解析
一.选择题(共10小题)
1.如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是( )
A.5.2 B.4.6 C.4 D.3.6
解:∵这组数据的众数是4,
∴x=4,
=(2+4+4+3+5)=3.6.
故选:D.
2.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )
A.80分 B.82分 C.84分 D.86分
解:
由加权平均数的公式可知===86,
故选:D.
3.如果一组数据x1,x2,…,xn的方差是4,则另一组数据x1+3,x2+3,…,xn+3的方差是( )
A.4 B.7 C.8 D.19
解:根据题意得:数据x1,x2,…,xn的平均数设为a,则数据x1+3,x2+3,…,xn+3的平均数为a+3,
根据方差公式:S2=[(x1﹣a)2+(x2﹣a)2+…(xn﹣a)2]=4.
则S2={[(x1+3)﹣(a+3)]2+[(x2+3)﹣(a+3)]2+…(xn+3)﹣(a+3)]}2
=[(x1﹣a)2+(x2﹣a)2+…(xn﹣a)2]
=4.
故选:A.
4.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )
A.255分 B.84分 C.84.5分 D.86分
解:根据题意得:85×+80×+90×=17+24+45=86(分),
故选:D.
5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
|
甲 |
乙 |
丙 |
丁 |
平均数(cm) |
185 |
180 |
185 |
180 |
方差 |
3.6 |
3.6 |
7.4 |
8.1 |
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )
2020浙教版八年级数学下册 第5章 特殊平行四边形 单元测试题
2020浙教版八年级数学下册 第5章 特殊平行四边形 单元测试题,八年级下数学单元测试,莲山课件.
A.甲 B.乙 C.丙 D.丁
解:∵=>=,
∴从甲和丙中选择一人参加比赛,
∵=<<,
∴选择甲参赛,
故选:A.
6.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是( )
A.2 B.2.8 C.3 D.3.3
解:(3×1+5×2+11×3+11×4)÷30
=(3+10+33+44)÷30
=90÷30
=3.
故30名学生参加活动的平均次数是3.
故选:C.
7.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,
甲组12户家庭用水量统计表
用水量(吨) |
4 |
5 |
6 |
9 |
户数 |
4 |
5 |
2 |
1 |
比较5月份两组家庭用水量的中位数,下列说法正确的是( )
A.甲组比乙组大 B.甲、乙两组相同
C.乙组比甲组大 D.无法判断
解:由统计表知甲组的中位数为=5(吨),
乙组的4吨和6吨的有12×=3(户),7吨的有12×=2户,
则5吨的有12﹣(3+3+2)=4户,
∴乙组的中位数为=5(吨),
则甲组和乙组的中位数相等,
故选:B.
8.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )
A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m
解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,
平均数为:(9.5+9.6+9.7+9.7+9.8+10.1+10.2)÷7=9.8m,
故选:B.
9.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )
A.94分,96分 B.96分,96分
C.94分,96.4分 D.96分,96.4分
解:总人数为6÷10%=60(人),
则94分的有60×20%=12(人),
98分的有60﹣6﹣12﹣15﹣9=18(人),
第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;
这些职工成绩的平均数是(92×6+94×12+96×15+98×18+100×9)÷60
=(552+1128+1440+1764+900)÷60
=5784÷60
=96.4.
故选:D.
10.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是( )
A.①③ B.①④ C.②③ D.②④
解:由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,
乙的成绩为8,9,7,8,10,7,9,10,7,10,
甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,
乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,
甲的方差S甲2=[2×(7﹣8.5)2+2×(8﹣8.5)2+(10﹣8.5)2+5×(9﹣8.5)2]÷10=0.85,
乙的方差S乙2=[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]÷10=1.45
∴S2甲<S2乙,
∴甲的射击成绩比乙稳定;
故选:C.
二.填空题(共4小题)
11.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s= 2k2﹣k (用只含有k的代数式表示).
解:∵一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n),
∴这组数据的中位数与平均数相等,
∵这组数据的各数之和是s,中位数是k,
∴s=nk.
∵=k,
∴n=2k﹣1,
∴s=nk=(2k﹣1)k=2k2﹣k,
故答案为:2k2﹣k.
12.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:
测试项目 |
创新能力 |
综合知识 |
语言表达 |
测试成绩(分数) |
70 |
80 |
92 |
将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是 77.4 分.
解:根据题意,该应聘者的总成绩是:70×+80×+92×=77.4(分),
故答案为:77.4.
13.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款 31.2 元.
解:该班同学平均每人捐款:100×12%+50×16%+20×44%+10×20%+5×8%=31.2元.
故答案为:31.2.
14.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是 1 mg/L.
解:由题意可得,
第3次检测得到的氨氮含量是:1.5×6﹣(1.6+2+1.5+1.4+1.5)=9﹣8=1mg/L,
故答案为:1.
三.解答题(共2小题)
15.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.
时间 |
1小时左右 |
1.5小时左右 |
2小时左右 |
2.5小时左右 |
人数 |
50 |
80 |
120 |
50 |
根据以上信息,请回答下列问题:
(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;
(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;
(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)
解:(1)冰红茶的百分比为100%﹣25%﹣25%﹣10%=40%,冰红茶的人数为400×40%=160(人),
即七年级同学最喜欢喝“冰红茶”的人数是160人;
(2)补全频数分布直方图如右图所示.
(3)(小时).
答:九年级300名同学完成家庭作业的平均时间约为1.8小时.
16.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
|
平均成绩/环 |
中位数/环 |
众数/环 |
方差 |
甲 |
a |
7 |
7 |
1.2 |
乙 |
7 |
b |
8 |
c |
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
解:(1)甲的平均成绩a==7(环),
∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
∴乙射击成绩的中位数b==7.5(环),
其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]
=×(16+9+1+3+4+9)
=4.2;
(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;
综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大
备注:以上内容仅显示部分,需完整版请下载!
2020浙教版八年级数学下册 第4章 平行四边形 单元测试题
2020浙教版八年级数学下册 第4章 平行四边形 单元测试题,八年级下数学单元测试,莲山课件.