江西省赣州市高二数学下学期第二次(5月)月考试题 文

  注:全卷总分  150 分,考试时间  120 分钟,请按要求作答。

一、选择题。本题共12个小题,每小题5分,共60分。在每题列出的四个选项中,只有一项是最符合题目要求的。

1.=                                                                  (     )

A. 2i B. 2i C. 2 D. 2

 

2.已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的                            (    )

A. 充分而不必要条件 B. 必要而不充分条件

C. 充分必要条件 D. 既不充分也不必要条件

 

3.已知z∈C,若z2+|z|=0,则z=                                                  (     )

A. i B. ±i C. 0 D. 0或±i

 

4.已知a>b>0,则﹣与的大小关系是                               (      )

A. ﹣> B. ﹣<   C.﹣= D. 无法确定

5.已知关于x与y之间的一组数据:

x 2 3 3 6 6

y 2 6 6 10 11

y与x的线性回归方程y=bx+a必过点                                         (       )

A. 4,7) B. 3.5,6.5) C. 3.5,7.5) D. 5,6)

 

6、设直线l:t为参数),曲线C1θ为参数),直线l与曲线C1交于A,B两点,则|AB|=(   )

A. 2 B. 1 C. D.

 

7.某程序框图如图所示,该程序运行输出的k值是                               (      )

 

A. 4 B. 5 C. 6 D. 7

8.不等式x﹣1的解集是()

A. (﹣∞,﹣1)∪(3,+∞)B.(﹣1,1)∪(3,+∞)C.(﹣∞,﹣1)∪(1,3)D.(﹣1,3)

 

9.极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是()

A. 两个圆       B.两条直线           C.一个圆和一条射线            D.一条直线和一条射线

10.用反证法证明命题:“三角形的内角中至少有一个不大于 60o ”时,假设正确的是

A.假设三内角都不大于 60o            B.假设三内角都大于 60o

C.假设三内角至多有一个大于 60o         D.假设三内角至多有两个大于 60o

11.不等式|2x﹣1|+|x+1|>2的解集为()

A. (﹣∞,0)∪(+∞)B.(+∞) C.(﹣∞,﹣1)∪(+∞) D. (﹣∞,0)

12.设x,y,z均大于0,则三个数:x+y+z+的值()

A. 都大于2     B.至少有一个不大于2 C. 都小于2      D.至少有一个不小于2

二、填空题(本大题共4小题,每小题5分,共20分.)

13.复数ω=﹣+i,则在复平面内,复数ω2对应的点在第        象限.

 

14.,由此猜想出第n(n∈N+)个数是.         

 

15.阅读程序框图,输出的结果s的值为        

 

16.在极坐标系中,极点为O,曲线C1ρ=6sinθ与曲线C2ρsin(θ+=,则曲线C1上的点到曲线C2的最大距离为          

三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)

17.(10分)某地对50人进行运动与性别是否有关测试,其中20名男性中有15名喜欢运动,30名女性中10名喜欢运动.

Ⅰ)根据以上数据建立一个2×2列联表;

Ⅱ)判断喜欢运动是否与性别有关?

参考数据:.

临界值表:

P(Χ2≥k) 0.100 0.050 0.025 0.010 0.005 0.001

k 2.706 3.841 5.024 6.635 7.879 10.828

 

18.(12分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1: t为参数),C2θ为参数).

Ⅰ)化C1C2的方程为普通方程,并说明它们分别表示什么曲线;

Ⅱ)若C1上的点P对应的参数为t=Q为C2上的动点,求PQ中点M到直线C3ρ(cosθ﹣2sinθ)=7距离的最小值.

 

19.(12分)班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.

Ⅰ)如果按性别比例分层抽样,男女同学分别抽取多少人?

Ⅱ)若这8位同学的数学、物理分数对应如下表:

学生编号 1 2 3 4 5 6 7 8

数学分数x 60 65 70 75 80 85 90 95

物理分数y 72 77 80 84 88 90 93 95

根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性请说明理由.

参考公式:相关系数;回归直线的方程是:=bx+a.

其中对应的回归估计值b=a=b;

参考数据:=77.5,=85,x1﹣)2≈1050,y1﹣)2≈456;x1)(y1≈688,≈32.4,≈21.4,≈23.5.

 

20.(12分)(1)已知等差数列{an},n∈N*),求证:{bn}仍为等差数列;

2)已知等比数列{cn},cn0(n∈N*)),类比上述性质,写出一个真命题并加以证明.

 

 

21.(12分)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.

Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;

Ⅱ)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.

 

22.(12分)在平面直角坐标系xOy中,已知曲线θ为参数),过点P(0,2)且斜率为k的直线与曲线C1相交于不同的两点A,B.

Ⅰ)求k的取值范围;

Ⅱ)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.

第二次月考答案

选择题答案:CCDBC   ABCCB  AD

一、选择题:本大题共12小题,每小题5分,共60分.在每一小题的四个选项中,只有一项是符合题目要求的,答案填写在答题卷上.

1.(5分)=() A. 2iB.﹣2iC.2D.﹣2解答: 解:原式==2,故选:C.

2.(5分)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab0”的()

A. 充分而不必要条件B.必要而不充分条件 C. 充分必要条件D.既不充分也不必要条件

分析: 考虑“a>0且b>0”与“a+b>0且ab>0”的互推性.

解答: 解:由a>0且b>0⇒“a+b>0且ab>0”,反过来“a+b>0且ab>0”⇒a>0且b>0,

∴“a>0且b>0”⇔“a+b>0且ab>0”,即“a>0且b>0”是“a+b>0且ab>0”的充分必要条件,故选C

3.(5分)已知z∈C,若z2+|z|=0,则z=()A. iB.±iC.0D.0或±i

解答: 解:设z=a+bi,(a,b∈R).

∵z2+|z|=0,∴a2b2+2abi+=0,∴,

解得或.则z=0,z=±i.故选:D.

4.(5分)已知a>b>0,则﹣与的大小关系是()

A. ﹣> B. ﹣< C. ﹣= D. 无法确定

分析: 平方作差可得:()2﹣()2,化简可判其小于0,进而可得结论

解答: 解:(﹣)2﹣()2=a+b﹣2a+b=2(b﹣=2(﹣),

∵a>b>0,∴﹣0,∴(﹣)2﹣()20,∴﹣<,

故选:B.

5.(5分)某程序框图如图所示,该程序运行输出的k值是()

 

A. 4 B. 5 C. 6 D. 7

分析: 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S,k值并输出k,模拟程序的运行过程,即可得到答案.

解答: 解:程序在运行过程中各变量的值如下表示:

S           k            是否继续循环

循环前  100   0/

第一圈100﹣20    1         是

第二圈100﹣2021     2        是

第六圈100﹣2021222324250   6        是

则输出的结果为7.故选C.

点评: 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.

6.(5分)已知关于x与y之间的一组数据:

x 2 3 3 6 6

y 2 6 6 10 11

y与x的线性回归方程y=bx+a必过点()

A. 4,7) B. 3.5,6.5) C. 3.5,7.5) D. 5,6)

解答: 解:∵=2+3+3+6+6)=4,=2+6+6+10+11)=7,

∴本组数据的样本中心点是(4,7),

∴y与x的线性回归方程为y=bx+a必过点(4,7)

故选:A.

点评: 本题考查线性回归方程必过样本中心点,考查学生的计算能力,这是一个基础题.

 

7.(5分)设直线l:t为参数),曲线C1θ为参数),直线l与曲线C1交于A,B两点,则|AB|=()

A. 2 B. 1 C. D.

分析: 由曲线C1θ为参数),利用cos2θ+sin2θ=1即可化为直角坐标方程.直线l:t为参数),消去参数化为=0.求出圆心C10,0)到直线l的距离d,利用|AB|=2即可得出.

解答: 解:由曲线C1θ为参数),化为x2+y2=1,

 

直线l:t为参数),消去参数化为y=x﹣1),即=0.

∴圆心C10,0)到直线l的距离d==∴|AB|=2==1.

8.(5分)不等式x﹣1的解集是()

A. (﹣∞,﹣1)∪(3,+∞)B.(﹣1,1)∪(3,+∞)C.(﹣∞,﹣1)∪(1,3)D.(﹣1,3)

 

解答: 解:不等式x﹣1化为:,

即:,由穿根法可得:不等式的解集为:(﹣∞,﹣1)∪(1,3)

故选:C.

 

9.(5分)极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是()

A. 两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线

分析: 由题中条件:“(ρ﹣1)(θ﹣π)=0”得到两个因式分别等于零,结合极坐标的意义即可得到.

解答: 解:方程(ρ﹣1)(θ﹣π)=0⇒ρ=1或θ=π,

ρ=1是半径为1的圆,θ=π是一条射线.故选C.10.B

 

11.(5分)不等式|2x﹣1|+|x+1|>2的解集为()

A. (﹣∞,0)∪(+∞)B.(+∞)C. (﹣∞,﹣1∪(+∞) D. (﹣∞,0)

解答: 解:①当x>时,|2x﹣1|+|x+1|=2x﹣1+(x+1)=3x,∴3x>2,解得x>,又x>∴x>;

②当﹣1≤x≤时,原不等式可化为﹣x+2>2,解得x<0,又﹣1≤x≤∴﹣1≤x<0;

③当x<﹣1时,原不等式可化为﹣3x>2,解得x<﹣,又x<﹣1,∴x<﹣1.

综上可知:原不等式的解集为(﹣∞,0)∪(+∞).故选:A.

12.(5分)设x,y,z均大于0,则三个数:x+y+z+的值()

A.都大于2B.至少有一个不大于2 C. 都小于2D.至少有一个不小于2

 

分析: 举反例否定A,B,C,即可得出答案.

解答: 解:已知x,y,z均大于0,取x=y=z=1,则x+=y+=z+=2,否定A,C.

x=y=z=,则x+y+z+都大于2.故A,B,C都不正确.因此只有可能D正确.

二、填空题:本大题共4小题,每小题5分,共20分,答案填写在答题卷上.

13.(5分)复数ω=﹣+i,则在复平面内,复数ω2对应的点在第象限.

解答: 解:复数ω=﹣+i,复数ω2=﹣﹣i,对应点(﹣,)在第三象限.

点评: 本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.

 

14.(5分),由此猜想出第n(n∈N+)个数是.

 

分析: 根号下由两个数组成,前一个数是首项为2,公差为1的等差数列,后一个数是分数,通项是,从而可猜想第n个数.解答: 解:∵,

∴将根号下的数分成两个数的和,2,3,4…的通项是n+1;

,,…的通项是∴由此猜想第n个数为.

故答案为:.

15.(5分)阅读程序框图,输出的结果s的值为.

 

 

分析: 2011除以6余数为1,根据程序框图转化为一个关系式,利用特殊角的三角函数值化简,得出6个一循环,可得出所求的结果.

解答: 解:∵2011÷6=335…1,

∴根据程序框图转化得:

sin+sin+sinπ+…+sin

=(++0﹣﹣+0)+(++0﹣﹣+0)+…+(++0﹣﹣+0)+

=.故答案为:

16.(5分)在极坐标系中,极点为O,曲线C1ρ=6sinθ与曲线C2ρsin(θ+=,则曲线C1上的点到曲线C2的最大距离为.

分析: 把已知曲线极坐标方程分别化为直角坐标方程,利用点到直线的距离公式求出圆心到直线的距离,即可得出.

解答: 解:曲线C1ρ=6sinθ化为:ρ2=6ρsinθ,∴直角坐标方程为:x2+y2=6y,配方为x2+(y﹣3)2=9.

曲线C2ρsin(θ+=,展开为=,化为直角坐标方程为:x+y﹣2=0.

圆心(0,3)到直线的距离d==.

则曲线C1上的点到曲线C2的最大距离为.故答案为:.

三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

17.(10分)某地对50人进行运动与性别是否有关测试,其中20名男性中有15名喜欢运动,30名女性中10名喜欢运动.

Ⅰ)根据以上数据建立一个2×2列联表;

Ⅱ)判断喜欢运动是否与性别有关?

参考数据:.

临界值表:

P(Χ2≥k) 0.100 0.050 0.025 0.010 0.005 0.001

k 2.706 3.841 5.024 6.635 7.879 10.828

 

考点: 独立性检验的应用.

专题: 计算题;概率与统计.

分析: Ⅰ)根据所给数据得到列联表.

Ⅱ)根据列联表中所给的数据做出观测值,把观测值同临界值进行比较得到有99.5%的把握认为“是否喜欢运动与性别有关”.

解答: 解:(Ⅰ)建立2×2列联表

喜欢运动 不喜欢运动 合计

男性 15 5 20

女性 10 20 30

合计 25 25 50

…(5分)

Ⅱ)…(8分)

故有99.5%的把握认为“是否喜欢运动与性别有关”…(10分)

点评: 独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过Χ2的观测值与临界值的比较解决的.

18.(12分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1: t为参数),C2θ为参数).

Ⅰ)化C1C2的方程为普通方程,并说明它们分别表示什么曲线;

Ⅱ)若C1上的点P对应的参数为t=Q为C2上的动点,求PQ中点M到直线C3ρ(cosθ﹣2sinθ)=7距离的最小值.

分析: Ⅰ)曲线C1: t为参数),利用sin2t+cos2t=1即可化为普通方程;C2θ为参数),利用cos2θ+sin2θ=1化为普通方程.

Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.

解答: 解:(Ⅰ)曲线C1: t为参数),化为(x+4)2+(y﹣3)2=1,

∴C1为圆心是(﹣4,3),半径是1的圆.

C2θ为参数),化为.

C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.

Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,

直线C3ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,

M到C3的距离d==|5sin(θ+φ)+13|,

从而当cossinθ=sinθ=﹣时,d取得最小值.

点评: 本题考查了参数方程化为普通方程、点到直线的距离公式公式、三角函数的单调性、椭圆与圆的参数与标准方程,考查了推理能力与计算能力,属于中档题.

 

19.(12分)班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.

Ⅰ)如果按性别比例分层抽样,男女同学分别抽取多少人?

Ⅱ)若这8位同学的数学、物理分数对应如下表:

学生编号 1 2 3 4 5 6 7 8

数学分数x 60 65 70 75 80 85 90 95

物理分数y 72 77 80 84 88 90 93 95

根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.

参考公式:相关系数;回归直线的方程是:=bx+a.

其中对应的回归估计值b=a=b;

参考数据:=77.5,=85,x1﹣)2≈1050,y1﹣)2≈456;x1)(y1≈688,≈32.4,≈21.4,≈23.5.

分析: Ⅰ)按分层抽样原理,计算应抽取的男生、女生各是多少;

Ⅱ)根据题目中的公式,计算相关系数r,判断线性相关性;求出线性回归方程中的系数,得出回归方程.

解答: 解:(Ⅰ)按男女生分层抽样的结果是,

女生应抽取(人),男生应抽取(人);…(4分)

Ⅱ)变量yx的相关系数是

r===≈0.99;…(6分)可以看出,物理与数学成绩是高度正相关;…(8分)

【若以数学成绩x为横坐标,物理成绩y为纵坐标做散点图,

从散点图可以看出这些点大至分布在一条直线附近,并且在逐步上升,

所以物理与数学成绩是高度正相关;】

y与x的线性回归方程是,

根据所给的数据,可以计算出

b===0.66,

a=b=85﹣0.66×77.5=33.85;…(10分)

所以y与x的回归方程是…(12分)

20.(12分)(1)已知等差数列{an},n∈N*),求证:{bn}仍为等差数列;

2)已知等比数列{cn},cn0(n∈N*)),类比上述性质,写出一个真命题并加以证明.

 

分析: 1)由求和公式可得bn==,进而可得bn+1bn为常数,可判为等差数列;

2)类比命题:若{cn}为等比数列,cn0,(n∈N*),dn=,则{dn}为等比数列,只需证明为常数即可.

解答: 解:(1)由题意可知bn==,

∴bn+1bn=﹣=,

∵{an}等差数列,∴bn+1bn==为常数,(d为公差)

∴{bn}仍为等差数列;

2)类比命题:若{cn}为等比数列,cn0,(n∈N*),

dn=,则{dn}为等比数列,

证明:由等比数列的性质可得:dn==,

故==为常数,(q为公比)

{dn}为等比数列

点评: 本题考查等差数列的定义,涉及类比推理和等比数列的定义,属中档题.

 

21.(12分)(选修4﹣5:不等式选讲)

已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.

Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;

Ⅱ)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.

分析: Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,画出函数y的图象,数形结合可得结论.

Ⅱ)不等式化即 1+a≤x+3,故 x≥a﹣2对都成立.故﹣≥a﹣2,由此解得a的取值范围.

解答: 解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.

y=|2x﹣1|+|2x﹣2|﹣x﹣3,则 y=,它的图象如图所示:

结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).

Ⅱ)设a>﹣1,且当时,f(x)=1+a,不等式化为 1+a≤x+3,故 x≥a﹣2对都成立.故﹣≥a﹣2,解得 a≤,故a的取值范围为(﹣1,].

 

22.(12分)在平面直角坐标系xOy中,已知曲线θ为参数),过点P(0,2)且斜率为k的直线与曲线C1相交于不同的两点A,B.

Ⅰ)求k的取值范围;

Ⅱ)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.

 

考点: 直线与圆的位置关系;参数方程化成普通方程.

专题: 直线与圆.

分析: Ⅰ)曲线C1的方程可写成(x﹣6)2+y2=4,过P(0,2)且斜率为k的直线方程为y=kx+2,代入曲线C1的方程可得(1+k2x2+4(k﹣3)x+36=0,直线与圆交于两个不同的点A,B等价于△>0,解出即可.

Ⅱ)设A(x1y1),B(x2y2),则,与共线等价于﹣2(x1+x2=6(y1+y2),利用根与系数的关系代入解出即可判断出.

解答: 解:(Ⅰ)曲线C1的方程可写成(x﹣6)2+y2=4,

P(0,2)且斜率为k的直线方程为y=kx+2,

代入曲线C1的方程得x2+(kx+2)212x+32=0,

整理得(1+k2x2+4(k﹣3)x+36=0,①

直线与圆交于两个不同的点A,B等价于△=[4(k﹣3)2]4×36(1+k2=42(﹣8k26k)>0,

解得,即k的取值范围为.

Ⅱ)设A(x1y1),B(x2y2),则,

由方程①,

y1+y2=k(x1+x2+4,③

而,

∴与共线等价于﹣2(x1+x2=6(y1+y2),

②③代入上式,解得.

由(Ⅰ)知,故没有符合题意的常数k.

备注:以下内容仅显示部分,需完整版请下载!