九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.2公式法导学案(新人教版)

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.2公式法导学案(新人教版),公式法,莲山课件.

21.2.1 配方法(2)

 

1.会用配方法解数字系数的一元二次方程.

2.掌握配方法和推导过程,能使用配方法解一元二次方程.

 

重点:掌握配方法解一元二次方程.

难点:把一元二次方程转化为形如(x-a)2=b的过程.

 (2分钟)

1.填空:

(1)x2-8x+__16__=(x-__4__)2;

(2)9×2+12x+__4__=(3x+__2__)2;

(3)x2+px+__(p2)2__=(x+__p2__)2.

2.若4×2-mx+9是一个完全平方式,那么m的值是__±12__.

 

一、自学指导.(10分钟)

问题1:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,场地的长和宽分别是多少米?

设场地的宽为x m,则长为__(x+6)__m,根据矩形面积为16 m2,得到方程__x(x+6)=16__,整理得到__x2+6x-16=0__.

探究:怎样解方程x2+6x-16=0?

对比这个方程与前面讨论过的方程x2+6x+9=4,可以发现方程x2+6x+9=4的左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程;而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?

解:移项,得x2+6x=16,

两边都加上__9__即__(62)2__,使左边配成x2+bx+(b2)2的形式,得

__x2__+6__x__+9=16+__9__,

左边写成平方形式,得

__(x+3)2=25__,

开平方,得

__x+3=±5__,  (降次)

即 __x+3=5__或__x+3=-5__,

解一次方程,得x1=__2__,x2=__-8__.

归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.

问题2:解下列方程:

(1)3×2-1=5;   (2)4(x-1)2-9=0;

(3)4×2+16x+16=9.

解:(1)x=±2;(2)x1=-12,x2=52;

(3)x1=-72,x2=-12.

归纳:利用配方法解方程时应该遵循的步骤:

(1)把方程化为一般形式ax2+bx+c=0;

(2)把方程的常数项通过移项移到方程的右边;

(3)方程两边同时除以二次项系数a;

(4)方程两边同时加上一次项系数一半的平方;

(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.

二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)

1.填空:

(1)x2+6x+__9__=(x+__3__)2;

  (2)x2-x+__14__=(x-__12__)2;

(3)4×2+4x+__1__=(2x+__1__)2.

2.解下列方程:

(1)x2+6x+5=0;  (2)2×2+6x+2=0;

(3)(1+x)2+2(1+x)-4=0.

解:(1)移项,得x2+6x=-5,

配方得x2+6x+32=-5+32,(x+3)2=4,

由此可得x+3=±2,即x1=-1,x2=-5.

(2)移项,得2×2+6x=-2,

二次项系数化为1,得x2+3x=-1,

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.3因式分解法导学案(新人教版)

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.3因式分解法导学案(新人教版),因式分解法,莲山课件.

配方得x2+3x+(32)2=(x+32)2=54,

由此可得x+32=±52,即x1=52-32,

x2=-52-32.

(3)去括号,整理得x2+4x-1=0,

  移项得x2+4x=1,

  配方得(x+2)2=5,

x+2=±5,即x1=5-2,x2=-5-2.

点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.

 

一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)

如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?

 

解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程:

12(8-x)(6-x)=12×12×8×6,

即x2-14x+24=0,

(x-7)2=25,

x-7=±5,

∴x1=12,x2=2,

x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.

答:2秒后△PCQ的面积为Rt△ABC面积的一半.

点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.

二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)

1.用配方法解下列关于x的方程:

(1)2×2-4x-8=0;    (2)x2-4x+2=0;

(3)x2-12x-1=0 ;  (4)2×2+2=5.

解:(1)x1=1+5,x2=1-5;

(2)x1=2+2,x2=2-2;

(3)x1=14+174,x2=14-174;

(4)x1=62,x2=-62.

2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.

解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.

∴(xy)z=[2×(-3)]-2=136.

 学生总结本堂课的收获与困惑.(2分钟)

1.用配方法解一元二次方程的步骤.

2.用配方法解一元二次方程的注意事项.

 学习至此,请使用本课时对应训练部分.(10分钟)

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.4一元二次方程的根与系数的关系导学案(新人教版)

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.4一元二次方程的根与系数的关系导学案(新人教版),一元二次方程的根与系数的关系,莲山课件.

Tagged: