北京市通州区2019-2020高一数学下学期期末考试试题(Word版附答案)
北京市通州区2019-2020高一数学下学期期末考试试题(Word版附答案),高一数学下学期期末试题,北京市,通州区,莲山课件.
延庆区2019—2020学年度第二学期期末考试试卷
高一数学 2020.7
本试卷共4页,满分150分,考试时间120分钟.
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合要求的, 把答案填在答题卡上.
1. 已知 的值等于
(A)
(B)
(C)
(D)
2.若 , ,则
(A)
(B)
(C)
(D)
3. 与角 终边相同的角为
(A)
(B)
(C)
(D)
4. 已知向量 , ,满足 ,则
(A)
(B)
(C)
(D)
5. 若角 的终边经过点 ,则 的值为
(A)
(B)
(C)
(D)
6. 已知向量 , ,且 ,则 的坐标为
(A)
(B)
(C)
(D)
7. 棱长为 的正方体的 个顶点均在同一个球面上,则此球的体积为
(A)
(B)
(C)
(D)
8.非零向量 满足 且 与 夹角为 ,则“ ”是“ ”的
(A)必要而不充分条件 (B)充分而不必要条件
(C)充分必要条件 (D)既不充分也不必要条件
9. 若函数 的图象向右平移 个单位长度得到函数 的图象,若函数 在区间 上单调递增,则 的最大值为
(A)
(B)
(C)
(D)
10. 已知一个正方体和一个圆柱等高,并且侧面积相等,则这个正方体和圆柱的体积之比为
(A)
(B)
(C)
(D)
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.
11. 一个圆锥的母线长为 ,母线与轴的夹角为 ,则圆锥底面半径为________.
12.已知单位向量 , 的夹角为 ,则 与 的夹角为________.
13. 已知函数 的部分图象如
图所示,则 的最小正周期为______.
14.在△ 中,已知 ,则△ 的形状为______.
15.若两个函数的图像经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列三个函数:
① ;② ;③ .
其中,为“同形”函数的序号是_______.
16. 如图,四面体 的一条棱长为 ,其余棱长均
为 ,记四面体 的表面积为 ,则函数
的定义域为_______;最大值为_______.
三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17. (本小题满分14分)
已知函数
(Ⅰ)求函数 的定义域及最小正周期;
(Ⅱ)求函数 的单调增区间.
.
18.(本小题满分14分)
如图,在 中, , , ,点 在边 上,
北京市密云区2019-2020高一数学下学期期末试题(Word版附答案)
北京市密云区2019-2020高一数学下学期期末试题(Word版附答案),高一数学下学期期末试题,北京市,密云区,莲山课件.
且 .
(Ⅰ)求 ;
(Ⅱ)求线段 的长.
19.(本小题满分14分)
已知函数 满足下列3个条件:
①函数 的周期为 ;② 是函数 的对称轴;③ .
(Ⅰ)请任选其中二个条件,并求出此时函数 的解析式;
(Ⅱ)若 ,求函数 的最值.
20. (本小题满分14分)
已知在 中, , , .
(Ⅰ)求 ;
(Ⅱ)若 是钝角三角形,求 的面积.
21. (本小题满分14分)
对于集合 , , . .集合 中的元素个数记为 .
规定:若集合 满足 ,则称集合 具有性质 .
(Ⅰ)已知集合 , ,
写出 ,并求出此时 , 的值;
(Ⅱ)已知 均有性质 ,且 ,求 的最小值.
(考生务必将答案答在答题卡上,在试卷上作答无效)
延庆区2019—2020学年度第二学期期末考试试卷
高一数学答案及评分标准 2020.7
一、选择题: 本大题共10小题,共50分.
B A C D A B D C C B
二、填空题:本大题共6小题,共30分.
11. ; 12. ; 13.
14.直角三角形 15. ①③ 16. ;
三、解答题:本大题共5小题,共70分.
17.(本小题满分14分)
解:(Ⅰ)因为 ……………2分
所以 ……………4分
所以 ……………6分
所以 的最小正周期为 . ……………7分
有意义,则 得, ……………8分
所以 的定义域为 ……………9分
(Ⅱ)令 得, ……………11分
, ……………12分
所以 . ……………13分
所以 单调递增区间是 ………14分
18. (本小题满分14分)
解:(Ⅰ)根据余弦定理: ………2分
………6分
(Ⅱ)因为 ,所以 ………7分
………9分
………10分
根据正弦定理得: ………11分
………14分
19. (本小题满分14分)
解:(Ⅰ)
法一:选①②,则 ……………3分
……………6分
法二:选①③,
,
…………6分
法三:选②③,
则
………6分
(Ⅱ)由题意得,
因为 ,所以 . ……8分
所以 . 有最大值 ……11分
所以 . 有最小值 ……14分
20. (本小题满分14分)
解:(Ⅰ)在 中
根据正弦定理得 ………2分
………3分
………5分
(Ⅱ)因为 , …………6分
所以 .
解得 或 . ………… 8分
当 时,
所以 为钝角,所以△ 的面积 ………… 11分
当 时, .
此时 为锐角,不满足题意 ………… 13分
所以△ 的面积 . …………14分
21.(本小题共14分)
解:(I) …………2分
…………4分
…………6分
(Ⅱ)由题意,集合 具有性质 ,等价于任意两个元素之和均不相同.
如,对于任意的 ,有 ,
等价于 ,即任意两个不同元素之差的绝对值均不相同.
令 ,
所以 具有性质 .
因为集合 均有性质 ,且 ,
所以 ,当且仅当 时等号成立.
所以 的最小值为 . …………14分
北京市大兴区2019-2020高一数学下学期期末检测试题(Word版附答案)
北京市大兴区2019-2020高一数学下学期期末检测试题(Word版附答案),高一数学下学期期末试题,北京市,大兴区,莲山课件.