北京市西城区2019-2020高二数学下学期期末考试试题(Word版附答案)
北京市西城区2019-2020高二数学下学期期末考试试题(Word版附答案),高二数学下学期期末试题,北京市,西城区,莲山课件.
延庆区2019—2020学年第二学期期末试卷
高 二 数 学 2020.7
本试卷共4页,满分150分,考试时间120分钟.
第一部分(选择题 共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.
1.设全集 ,集合 , ,则集合
(A) (B) (C) (D)
2.焦点在 轴的正半轴上,且焦点到准线的距离为 的抛物线的标准方程是
(A) (B) (C) (D)
3. 已知向量 , .若 ,则 的值为
(A) (B) (C) (D)
4.设 ,则
(A) (B) (C) (D)
5. 在下列函数中,定义域为实数集的奇函数为
(A) (B) (C) (D)
6. 圆 截 轴所得弦的长度等于
(A) (B) (C) (D)
7.已知两条不同的直线 和两个不同的平面 ,下列四个命题中错误的为
(A)若 , ,则 (B)若 , ,则
(C)若 , ∥ 且 ∥ ,则 ∥ (D)若 , ,则
8. 已知函数 ,则“ 在 上单调递减”是“ ”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
9.将函数 的图象向左平移 个单位长度,得到的图象的函数解析式为
(A) (B) (C) (D)
10.已知函数 的定义域为 ,且满足下列三个条件:
①对任意的 ,且 ,都有 ;
② ;③ 是偶函数;
若 , , ,则 , , 的大小关系正确的是
(A) (B) (C) (D)
第Ⅱ卷(非选择题,共110分)
二、填空题:本大题共5小题,每小题5分,共25分.
11.已知复数 ,则 .
12.双曲线 的离心率为 ,则其渐近线方程为 .
13.数列 中, , , . 若其前 项和为 ,则 ___ ____.
14.在△ 中, , ,,则 边上的高等于 .
15.已知函数 :① 函数 的单调递减区间为 ;
② 若函数 有且只有一个零点,则 ;
③ 若 ,则 ,使得函数 恰有2个零点 , , 恰有一个零点 ,且 , .
其中,所有正确结论的序号是_______.
三、解答题:本大题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.
16.(本小题满分14分)
已知 是公差为 的无穷等差数列,其前 项和为 . 又 ,且 ,是否存在大于 的正整数 ,使得 ?若存在,求 的值;若不存在,说明理由.
17.(本小题满分14分)
已知函数 .
(Ⅰ)求函数 的最小正周期和单调递减区间;
(Ⅱ)若当 时,关于 的不等式 有解,求实数 的取值范围.
18. (本小题满分14分)
在天猫进行6.18大促期间,某店铺统计了当日所有消费者的消费金额(单位:元),如图所示:
(Ⅰ)将当日的消费金额超过2000元的消费者称为“消费达人”,现从所有“消费达
人”中随机抽取3人,求至少有1位消费者,当日的消费金额超过2500元的概率;
(Ⅱ)该店铺针对这些消费者举办消费返利活动,预设有如下两种方案:
方案1:按分层抽样从消费金额在不超过1000元,超过1000元且不超过2000元,
2000元以上的消费者中总共抽取25位“幸运之星”给予奖励金,每人分别为100元、200元和300元.
方案2:每位会员均可参加线上翻牌游戏,每轮游戏规则如下:有3张牌,背面
都是相同的喜羊羊头像,正面有1张笑脸、 2张哭脸,将3张牌洗匀后背面朝上摆放,每次只能翻一张且每翻一次均重新洗牌,共翻三次. 每翻到一次笑脸可得30元奖励金.如果消费金额不超过1000元的消费者均可参加1轮翻牌游戏;超过1000元且不超过2000元的消费者均可参加2轮翻牌游戏;2000元以上的消费者均可参加3轮翻牌游戏(每次、每轮翻牌的结果相互独立).
以方案2的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.
19.(本小题满分14分)
如图,在四棱锥 中, 平面 , , , , 为线段 上一点( 不是端点),________ .
从① ;② 平面 ;这两个条件中选一个,补充在上面问题中,并完成解答;注:如果选择多个条件分别解答,按第一个解答计分.
(Ⅰ)求证:四边形 是直角梯形;
(Ⅱ)求直线 与平面 所成角的正弦值;
(Ⅲ)是否存在点 ,使得直线 平面 ,若存在,求出 的值,若不存在,请说明理由.
20.(本小题满分15分)
已知函数 .
(Ⅰ)求函数 的单调区间;
(Ⅱ)求证:当 时, ;
(Ⅲ)当 时,若曲线 在曲线 的下方,求实数 的取值范围.
21. (本小题满分14分)
已知椭圆 的短轴长为2,离心率为 , 、 分别是椭圆长轴的左右两个端点,P是椭圆上异于点 、 的点.
(Ⅰ)求出椭圆 的标准方程;
(Ⅱ)设点 满足: , .求 与 面积的比值.
高二数学答案及评分标准 2020.7
一、选择题:( ) 1.A 2.D 3 . C 4.B 5. A 6. A 7. D 8.B 9.D 10. C
二、填空题:( )11. 12. ;13. ;14. ;15. ①③.
注:第15题全部选对得5分,不选或有错选得0分,其他得3分.
三、解答题:本大题共5小题,共85分.
16.(本小题满分14分)
解:存在正整数 ,使得 . (此处未写,结论处有,不扣分) …………2分
理由如下:
在等差数列 中, …………5分
又 , .
所以由 得 …………7分
所以 . …………10分
令 ,即 .
整理得 .解得 或 . …………12分
因为 ,所以 . (未写k>1扣一分) …………14分
所以当 时, .
17. (本小题满分14分)
解:(Ⅰ)因为 =
. …3分
所以函数 的最小正周期 . …4分
因为函数 的的单调递减区间为 ,
所以 , …6分
解得 , …7分
所以函数 的单调递减区间是 . …8分
(一个 都没写的扣一分)
(Ⅱ)由题意可知,不等式 有解,即 . …10分
由(Ⅰ)可知 .当 时, , …11分
故当 ,即 时, f(x)取得最大值,最大值为 . …13分
所以 .故实数 的取值范围是 . …14分 18. (本小题满分14分)
(Ⅰ)解:记“在抽取的3人中至少有1位消费者消费超过2500元”为事件A. …1分
由图可知,去年消费金额在 内的有8人,在 内的有4人,
消费金额超过2000元的“消费达人”共有 8+4=12(人),
从这12人中抽取3人,共有 种不同方法, …2分
其中抽取的3人中没有1位消费者消费超过2500元,共有 种不同方法.
所以,
北京市通州区2019-2020高二数学下学期期末考试试题(Word版附答案)
北京市通州区2019-2020高二数学下学期期末考试试题(Word版附答案),高二数学下学期期末试题,北京市,通州区,莲山课件.
. …4分
(Ⅱ)解:方案1按分层抽样从消费金额在不超过1000元,超过1000元且不超过2000元,
2000元以上的消费者中总共抽取25位“幸运之星”,则“幸运之星”中的人数分别为
, , , …5分
按照方案1奖励的总金额为 (元). …6分
方案2 设 表示参加一轮翻牌游戏所获得的奖励金,则 的可能取值为0,30,60,90.…7分
由题意,每翻牌1次,翻到笑脸的概率为 , …8分
所以 ,
, .
0 30 60 90
所以 的分布列为:
…10分
数学期望为 (元), …12分
按照方案2奖励的总金额为 (元), …13分
因为由 ,所以施行方案1投资较少. …14分
19. (本小题满分14分)
解:(Ⅰ)选择①,连结 ,
因为 平面 , 所以 , ……………..1分
因为 , ,所以 .….2分
因为 , ,所以 ,所以 . …3分
因为 ,所以 , 所以四边形 是直角梯形. …….4分
选择②,连结 ,
因为 平面 , 所以 , ……………..1分
因为 , ,所以 .….2分
因为 , ,所以 ,所以 . …3分
因为 平面 , 平面 ,平面 平面 ,
所以 , 所以四边形 是直角梯形. …….4分
(Ⅱ)在平面 内过 作 ,则 平面 ,由(Ⅰ)知 ,所以以 为原点, 所在直线分别为 轴,建立空间直角坐标系 ,….5分
则 , , , , .
则 , , …….6分
设平面 的一个法向量 ,则 即 …7分
令 ,则 , ,,则 . …8分
设直线 与平面 所成的角为 ,
所以 . …9分
所以直线 与平面 所成角的正弦值为 .
(Ⅲ)设 ,则 .…10分
所以 , …11分
若 平面 ,则 , …12分
即 ,所以 . …13分
因为 ,所以,线段 上不存在点 使得直线 平面 . …14分
20. (本小题满分15分)
(Ⅰ)因为 ,定义域R,所以 . ……2分
令 ,解得 ,令 ,解得 ……3分
所以函数 的单调递增区间为 ,单调递减区间为 ……4分
(Ⅱ)令 , ……5分
. ……6分
由 得 , ,于是 ,故函数 在 上是增函数. ……7分
所以当 时, ,即 . …… 9分
(Ⅲ)若曲线 在曲线 的下方,则 …10分
令 ,则 . 11分
当 时,解法一:因为 ,所以
由(Ⅱ)知 .……13分
解法二:因为 ,所以 , , ,且 ,则 , ,所以 , 在 上是增函数. 所以 ,符合题意. ……13分
当 时,若 ,则 ,那么 ,所以 ,
则 在 上是减函数. 所以 时, ,不合题意. ……15分
综上所述,实数 的取值范围是 .
21. (本小题满分14分)
(Ⅰ)由题意,得 , . …… 2分; 又因为 , …… 3分
所以 , . …… 4分;故椭圆 的方程为 . ……… 5分
(Ⅱ)因为两个三角形的底边均为 ,所以面积之比等于 …6分
解法一:由P是椭圆上异于点 、 的点可知, 直线 的斜率存在且不为0
设直线 的斜率分别为 ,则直线 的方程为 …7分
由 直线 的方程为 . …8分
将 代入 ,得 ,
因为 是椭圆上异于点 的点,所以 . ……9分
所以 …11分
由 ,所以直线 的方程为 . ……12分
由 ,得 . ……13分
所以 . ……14分
解法二:设 ,则 , ①, …7分
且 , 因为 , …8分
所以 ,则直线 ②, …9分
同理直线 ③, …10分
③与②联立,解得: , …12分
将①带入,得 , …13分
所以 . ……14分
北京市房山区2019-2020高二数学下学期期末考试试题(Word版附答案)
北京市房山区2019-2020高二数学下学期期末考试试题(Word版附答案),高二数学下学期期末试题,北京市,房山区,莲山课件.