人教版五上数学第一单元第2课时小数乘小数教案

人教版五上数学第一单元第2课时小数乘小数教案,小数乘小数,莲山课件.

3.4 实际问题与一元一次方程

第1课时 产品配套问题和工程问题

教学目标:

1.掌握产品配套问题、工程问题中常见的数量关系.

    2.掌握用一元一次方程解决实际问题的基本过程.

教学重点:弄清题意,用列方程解决实际问题.

教学难点:寻找实际问题中的等量关系,建立数学模型.

教学过程:

一、复习巩固

解下列方程

(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);

(2)3(2-3x)-3[3(2x-3)+3]=5;

(3)(x+1)+(x+2)-3=-(x+3).

二、提出问题,探究新知

问题1(课本P100例1):某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该安排多少名工人生产螺钉,多少名工人生产螺母?

练习1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?

问题2:要用20张白卡纸做包装盒,每张白卡纸可以做盒身两个或者做盒底盖3个.如果一个盒身和两个盒底盖可以做成一个包装盒,那么能否把这白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请设计一种分法.

 (想一想:如果一张白卡纸可以适当的剪裁出一个盒身和一个盒底盖,那么,怎样分这些白卡纸,才能既使做出的盒身和盒底盖配套,又能充分地利用白卡纸?)

练习2:

(1)用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?

(2)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?

教学过程:

问题3:课本P100例2:

整理一批图书:由一个人做要40 h完成.现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?

1.逐句阅读题目,熟悉题中已知条件,回答问题:

(1)由一个人要做40小时完成,这句话的作用?

人教版五上数学第一单元第3课时小数倍的应用和验算教案

人教版五上数学第一单元第3课时小数倍的应用和验算教案,小数倍的应用和验算,莲山课件.

(2)根据题意,整项工作分成几部分?

(3)借助线段图进一步理解题意.

2.根据线段图,题目反映的相等关系是什么?

3.设未知数,列方程解答.

4.例题变式练习:

(1)整理一批图书,由一个人做要40 h完成,现计划由一部分人先做4 h,然后增加2人与他们一起做6 h,完成这项工作的,假设这些人的工作效率相同,具体应先安排多少人工作?

(2)整理一批图书,由一个人做要40 h完成,现计划由2人先做4 h,然后增加若干人与他们一起又做4 h完成了这项工作,问增加了多少人?

三、归纳总结

1.归纳:用一元一次方程解决实际问题的基本过程.

2.学生独立练习:(有困难的个别指导)

(1)课本P101练习第2题

(2)货车早上6:40从A城出发,15:40到达B城,一辆客车上午8:00从A城出发,14:00到达B城.求客车追上货车是什么时刻?

提示:①由已知条件如何表示出货车与客车的速度?

②当客车在途中追上货车时,两车的行驶时间有什么关系?行驶路程有什么关系?

③以什么量为未知数,什么量为相等关系列方程,求出方程的解后又如何求解题目问题.

强调:弄清货车与客车出发时间的先后,与到达时间的先后,以理解题意.

 

四、课时小结

通过以下问题引导学生反思小结:

 1.通过这节课的学习,你有什么收获?

 2.在解决配套、分配等问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?

 

五、课堂作业

课本P101练习第1题,P106习题3.4第2、3题.

课本P106第4、5题.

 

人教版五上数学第一单元第4课时积的近似数教案

人教版五上数学第一单元第4课时积的近似数教案,积的近似数,莲山课件.