2020-2021学年高一数学单元知识梳理:函数的概念与性质

2020-2021学年高一数学单元知识梳理:函数的概念与性质,高一数学知识点,函数的概念与性质,莲山课件.

2020-2021 学年高一数学单元复习真题训练:指数函数与对数函数 1.设 a=3 0.7,b=( ? ? ) ﹣0.8,c=log0.70.8,则 a,b,c 的大小关系为( ) A.a<b<c B.b<a<c C.b<c<a D.c<a<b 【答案】D 【解析】a=3 0.7,b=( ? ? ) ﹣0.8=3 0.8,则 b>a>1, log0.70.8<log0.70.7=1,∴c<a<b,故选:D. 2.设 alog34=2,则 4 ﹣a=( ) A. ? ?? B. ? ? C. ? ? D. ? ? 【答案】B 【解析】因为 alog34=2,则 log34a=2,则 4a=32=9 则 4 ﹣a= ? ?? = ? ? ,故选:B. 3.设 a=log32,b=log53,c= ? ?,则( ) A.a<c<b B.a<b<c C.b<c<a D.c<a<b 【答案】A 【解析】∵a=log32= ????√? ? <????√? ? = ? ?,b=log53= ????√?? ? >????√?? ? = ? ?, c= ? ?,∴a<c<b.故选:A. 4.已知 55<84,134<85.设 a=log53,b=log85,c=log138,则( ) A.a<b<c B.b<a<c C.b<c<a D.c<a<b 【答案】A【解析】∵ ? ? = ????? ????? =log53•log58<(?????+?????) ? ? = ( ???? ?? ? )?<1,∴a<b; ∵55<84,∴5<4log58,∴log58>1.25,∴b=log85<0.8; ∵134<85,∴4<5log138,∴c=log138>0.8,∴c>b, 综上,c>b>a.故选:A. 5.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区 新冠肺炎累计确诊病例数 I(t)(t 的单位:天)的 Logistic 模型:I(t)= ? ?+?−?.??(?−??),其中 K 为最大确诊病例数.当 I(t*)=0.95K 时,标志着已初步遏制疫情,则 t*约为( )(ln19≈3) A.60 B.63 C.66 D.69 【答案】C 【解析】由已知可得 ? ?+?−?.??(?−??) =0.95K,解得 e ﹣0.23(t﹣53) = ? ??, 两边取对数有﹣0.23(t﹣53)=﹣ln19,解得 t≈66,故选:C. 6.基本再生数 R0 与世代间隔 T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的 平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模 型:I(t)=e rt 描述累计感染病例数 I(t)随时间 t(单位:天)的变化规律,指数增长率 r 与 R0, T 近似满足 R0=1+rT.有学者基于已有数据估计出 R0=3.28,T=6.据此,

北师大版三年级语文上册第十单元提升练习题及答案

北师大版三年级语文上册第十单元提升练习题及答案,三年级语文上册试卷,莲山课件.

在新冠肺炎疫情初始阶 段,累计感染病例数增加 1 倍需要的时间约为( )(ln2≈0.69) A.1.2 天 B.1.8 天 C.2.5 天 D.3.5 天 【答案】B 【解析】把 R0=3.28,T=6 代入 R0=1+rT,可得 r=0.38,∴I(t)=e 0.38t, 当 t=0 时,I(0)=1,则 e 0.38t=2,两边取对数得 0.38t=ln2,解得 t= ??? ?.?? ≈1.8.故选 B. 7.若 2a+log2a=4b+2log4b,则( ) A.a>2b B.a<2b C.a>b2 D.a<b2【答案】B 【解析】因为 2a+log2a=4b+2log4b=22b+log2b; 因为 22b+log2b<22b+log22b=22b+log2b+1 即 2a+log2a<22b+log22b; 令 f(x)=2x+log2x,由指对数函数的单调性可得 f(x)在(0,+∞)内单调递增; 且 f(a)<f(2b) ⇒a<2b;故选 B. 8.已知 a=log27,b=log38,c=0.30.2,则 a,b,c 的大小关系为( ) A.c<b<a B.a<b<c C.b<c<a D.c<a<b 【答案】A 【解析】由题意,可知:a=log27>log24=2,b=log38<log39=2, c=0.30.2<1,∴c<b<a.故选:A. 9.已知 a=log52,b=log0.50.2,c=0.50.2,则 a,b,c 的大小关系为( ) A.a<c<b B.a<b<c C.b<c<a D.c<a<b 【答案】A 【解析】由题意,可知:a=log52<1, b=log0.50.2= ????? ?? = ????−??−? =log25>log24=2.c=0.50.2<1, ∴b 最大,a、c 都小于 1. ∵a=log52= ? ????? ,c=0.50.2 = (??) ?? = √?? ? = ?√? ? . 而 log25>log24=2> √? ? ,∴ ? ????? < ? √? ? .∴a<c,∴a<c<b.故选:A. 10.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足 m2﹣m1 = ?? lg ?? ?? ,其中星等为 mk 的星的亮度为 Ek(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣ 1.45,则太阳与天狼星的亮度的比值为( )A.1010.1 B.10.1 C.lg10.1 D.10 ﹣10.1 【答案】A 【解析】设太阳的星等是 m1=﹣26.7,天狼星的星等是 m2=﹣1.45, 由题意可得: −?.?? − (−??.?) = ?? ???? ?? , ∴ ???? ?? = ??.?? = ??. ? ,则?? ?? = ?? ??.?.故选:A. 11.已知函数 f(x)=log2(x2+a),若 f(3)=1,则 a= ﹣7 . 【答案】﹣7 【解析】函数 f(x)=log2(x2+a),若 f(3)=1, 可得:log2(9+a)=1,可得 a=﹣7. 故答案为:﹣7.

北师大版三年级语文上册第四单元提升练习题及答案

北师大版三年级语文上册第四单元提升练习题及答案,三年级语文上册试卷,莲山课件.