浙江省台州市2022年中考数学试卷解析版

浙江省宁波市2022年中考数学试卷解析版

浙江省宁波市2022年中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.-2022的相反数是(  )A.2022B.−12022C.-2022D.12022【答案】A【知识点】相反数及有理数的

浙江省台州市2022年中考数学试卷一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算-2×(-3)的结果是(  )A.6B.-6C.5D.-5【答案】A【知识点】有理数

简介:浙江省台州市2022年中考数学试卷一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算-2×(-3)的结果是(  )A.6B.-6C.5D.-52.如图是由四个相同的正方体搭成的立体图形,其主视图是(  )A.B.C.D.3.估计6的值应在(  )A.1和2之间B.2和3之间C.3和4之间D.4和5之4.如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是(  )A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°5.下列运算正确的是(  )A.a2⋅a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a26.如图是战机在空中展示的轴对称队形.以飞机B、C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为(  )A.(40,−a)B.(−40,a)C.(−40,−a)D.(a,−40)7.从A、B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是(  )A.平均数B.中位数C.众数D.方差8.吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是(  ) A.B.C.D.9.如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是(  )A.若AB=AC,AD⊥BC,则PB=PCB.若PB=PC,AD⊥BC,则AB=ACC.若AB=AC,∠1=∠2,则PB=PCD.若PB=PC,∠1=∠2,则AB=AC10.一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为(  )A.(840+6π)m2B.(840+9π)m2C.840m2D.876m2二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:a2−1=  .12.将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)掷一次,朝上一面点数是1的概率为  .13.如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为  .14.如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为  cm2.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x的值是  .先化简,再求值:3−xx−4+1,其中x=解:原式=3−xx−4⋅(x−4)+(x−4)…① =3−x+x−4=−116.如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为  ;当点M的位置变化时,DF长的最大值为  .三、解答题(共有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:9+|−5|−22.18.解方程组:x+2y=4x+3y=5.19.如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式;(2)若火焰的像高为3cm,求小孔到蜡烛的距离.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,连接AD.(1)求证:BD=CD;(2)若⊙O与AC相切,求∠B的度数;(3)用无刻度的直尺和圆规作出劣弧AD的中点E.(不写作法,保留作图痕迹)22.某中学为加强学生的劳动教育,需要制定学生每周劳动时间(单位:小时)的合格标准,为此随机调查了100名学生目前每周劳动时间,获得数据并整理成表格.学生目前每周劳动时间统计表 每周劳动时间x(小时)0.5≤x<1.51.5≤x<2.52.5≤x<3.53.5≤x<4.54.5≤x<5.5组中值12345人数(人)2130191812(1)画扇形图描述数据时,1.5≤x<2.5这组数据对应的扇形圆心角是多少度?(2)估计该校学生目前每周劳动时间的平均数;(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.23.图1中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图2,在正方形ABCD各边上分别取点B1,C1,D1,A1,使AB1=BC1=CD1=DA1=45AB,依次连接它们,得到四边形A1B1C1D1;再在四边形A1B1C1D1各边上分别取点B2,C2,D2,A2,使A1B2=B1C2=C1D2=D1A2=45A1B1,依次连接它们,得到四边形A2B2C2D2;…如此继续下去,得到四条螺旋折线.(1)求证:四边形A1B1C1D1是正方形;(2)求A1B1AB的值;(3)请研究螺旋折线BB1B2B3…中相邻线段之间的关系,写出一个正确结论并加以证明.24.如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m;①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值. 答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】B11.【答案】(a+1)(a−1)12.【答案】1613.【答案】1014.【答案】815.【答案】516.【答案】33;6-3317.【答案】原式=3+5-4=418.【答案】解:x+2y=4①x+3y=5②由②-①得y=1将y=1代入①得x+2=4解之:x=2∴原方程组的解为x=2y=1.19.【答案】解:在Rt△ABC中,∠A=75°,∴BC=ABsin∠A=3×sin75°≈3×0.97≈2.9m答:梯子的顶部离地面的垂直高度为2.9m 20.【答案】(1)解:∵y是关于x的反比例函数,设y与x之间的函数解析式为y=kx,当x=6时y=2∴k=2×6=12;∴函数解析式为y=12x(2)∵y=12x当y=3时3x=12,解之:x=4答:若火焰的像高为3cm,小孔到蜡烛的距离为4cm.21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD(2)∵⊙O与AC相切,∴BA⊥AC,∴∠BAC=90°,∵AB=AC,∴∠B=∠C=45°.∠B=45°(3)如下图,点E就是所要做的AD的中点. 22.【答案】(1)解:由题意得360°×30100×100%=108°.答:这组数据对应的扇形圆心角是108°.(2)答:x=1×21+2×30+3×19+4×18+5×12100=2.7答:该校学生目前每周劳动时间的平均数约为2.7小时.(3)制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心.从平均数看,标准可以定为3小时.理由:平均数为2.7小时,说明该校学生目前每周劳动时间平均水平为2.7小时,把标准定为3小时,至少有30%的学生目前每周劳动时间能达标,同时至少还有51%的学生未达标,这样使多数学生有更高的努力目标.从中位数的范围或频数看,标准可以定为2小时.理由:该校学生目前每周劳动时间的中位数落在1.5≤x<2.5范围内,把标准定为2小时,至少有49%的学生目前劳动时间能达标,同时至少还有21%的学生未达标,这样有利于学生建立达标的信心,促进未达标学生努力达标,提高该校学生的劳动积极性.23.【答案】(1)证明:在正方形ABCD中,AB=BC,∠A=∠B=90°,又∵AB1=BC1=CD1=DA1=45AB,∴AA1=BB1=15AB.∴△AB1A1≌△BC1B1.∴A1B1=B1C1,∠AB1A1=∠BC1B1.又∵∠BC1B1+∠BB1C1=90°,∴∠BB1C1+∠AB1A1=90°.∴∠A1B1C1=90°.同理可证:B1C1=C1D1=D1A1=A1B1.∴四边形A1B1C1D1是正方形.(2)解:∵AA1=BB1=15AB,AB1=BC1=CD1=DA1=45AB,设AA1=a,则AB1=4a,AB=5a,∴A1B1=a2+16a2=17a∴A1B1AB=17a5a=175. (3)解:相邻线段的比为51717或175.理由:∵BB1=15AB,A1B1=17a,∴B1B2=15A1B1,A1B1AB=175,∴BB1B1B2=ABA1B1=5a17a=51717同理可得B2B1B2B3=51717∴相邻线段的比为51717或17524.【答案】(1)解:①由题意可知点A(2,2)是上边缘抛物线的顶点,∴设y=a(x-2)2+2,∵抛物线过点(0,1.5)∴4a+2=1.5解之:a=-18∴抛物线的解析式为y=-18(x-2)2+2,,当y=0时-18(x-2)2+2=0解之:x1=6,x2=-2(舍去)∴喷出水的最大射程OC为6m.②∵抛物线的对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5)∴下边缘抛物线是由上边缘抛物线向左平移4cm得到,∴点B(2,0)③∵EF=0.5,∴点F的纵坐标为0.5,当y=0.5时-18(x-2)2+2=0.5解之:x1=2+23,x2=2-23(舍去),当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5∴x≤2+23;∵ 当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+23,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+23-3=23-1在看下边缘抛物线,喷出的说能浇灌到绿化带底部的条件为OB≤d,∴d的最小值为2,∴d的取值范围为2≤d≤23-1.(2)解:当喷水口高度最低时,且恰好能浇灌到整个绿化带时,点D,F恰好分别在两条抛物线上,设点Dm,-18m+22+h+0.5,Fm+3,-18m+3-22+h+0.5∴-18m+3-22+h+0.5–18m+22+h+0.5=1解之:m=2.5,∴点D的纵坐标为h-6532,∴h-6532=0解之:h=6532∴h的最小值为6532.
简介:浙江省台州市2022年中考数学试卷一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算-2×(-3)的结果是(  )A.6B.-6C.5D.-52.如图是由四个相同的正方体搭成的立体图形,其主视图是(  )A.B.C.D.3.估计6的值应在(  )A.1和2之间B.2和3之间C.3和4之间D.4和5之4.如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是(  )A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°5.下列运算正确的是(  )A.a2⋅a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a26.如图是战机在空中展示的轴对称队形.以飞机B、C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为(  )A.(40,−a)B.(−40,a)C.(−40,−a)D.(a,−40)7.从A、B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是(  )A.平均数B.中位数C.众数D.方差8.吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是(  ) A.B.C.D.9.如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是(  )A.若AB=AC,AD⊥BC,则PB=PCB.若PB=PC,AD⊥BC,则AB=ACC.若AB=AC,∠1=∠2,则PB=PCD.若PB=PC,∠1=∠2,则AB=AC10.一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为(  )A.(840+6π)m2B.(840+9π)m2C.840m2D.876m2二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:a2−1=  .12.将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)掷一次,朝上一面点数是1的概率为  .13.如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为  .14.如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为  cm2.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x的值是  .先化简,再求值:3−xx−4+1,其中x=解:原式=3−xx−4⋅(x−4)+(x−4)…① =3−x+x−4=−116.如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为  ;当点M的位置变化时,DF长的最大值为  .三、解答题(共有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:9+|−5|−22.18.解方程组:x+2y=4x+3y=5.19.如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式;(2)若火焰的像高为3cm,求小孔到蜡烛的距离.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,连接AD.(1)求证:BD=CD;(2)若⊙O与AC相切,求∠B的度数;(3)用无刻度的直尺和圆规作出劣弧AD的中点E.(不写作法,保留作图痕迹)22.某中学为加强学生的劳动教育,需要制定学生每周劳动时间(单位:小时)的合格标准,为此随机调查了100名学生目前每周劳动时间,获得数据并整理成表格.学生目前每周劳动时间统计表 每周劳动时间x(小时)0.5≤x<1.51.5≤x<2.52.5≤x<3.53.5≤x<4.54.5≤x<5.5组中值12345人数(人)2130191812(1)画扇形图描述数据时,1.5≤x<2.5这组数据对应的扇形圆心角是多少度?(2)估计该校学生目前每周劳动时间的平均数;(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.23.图1中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图2,在正方形ABCD各边上分别取点B1,C1,D1,A1,使AB1=BC1=CD1=DA1=45AB,依次连接它们,得到四边形A1B1C1D1;再在四边形A1B1C1D1各边上分别取点B2,C2,D2,A2,使A1B2=B1C2=C1D2=D1A2=45A1B1,依次连接它们,得到四边形A2B2C2D2;…如此继续下去,得到四条螺旋折线.(1)求证:四边形A1B1C1D1是正方形;(2)求A1B1AB的值;(3)请研究螺旋折线BB1B2B3…中相邻线段之间的关系,写出一个正确结论并加以证明.24.如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m;①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值. 答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】B11.【答案】(a+1)(a−1)12.【答案】1613.【答案】1014.【答案】815.【答案】516.【答案】33;6-3317.【答案】原式=3+5-4=418.【答案】解:x+2y=4①x+3y=5②由②-①得y=1将y=1代入①得x+2=4解之:x=2∴原方程组的解为x=2y=1.19.【答案】解:在Rt△ABC中,∠A=75°,∴BC=ABsin∠A=3×sin75°≈3×0.97≈2.9m答:梯子的顶部离地面的垂直高度为2.9m 20.【答案】(1)解:∵y是关于x的反比例函数,设y与x之间的函数解析式为y=kx,当x=6时y=2∴k=2×6=12;∴函数解析式为y=12x(2)∵y=12x当y=3时3x=12,解之:x=4答:若火焰的像高为3cm,小孔到蜡烛的距离为4cm.21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD(2)∵⊙O与AC相切,∴BA⊥AC,∴∠BAC=90°,∵AB=AC,∴∠B=∠C=45°.∠B=45°(3)如下图,点E就是所要做的AD的中点. 22.【答案】(1)解:由题意得360°×30100×100%=108°.答:这组数据对应的扇形圆心角是108°.(2)答:x=1×21+2×30+3×19+4×18+5×12100=2.7答:该校学生目前每周劳动时间的平均数约为2.7小时.(3)制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心.从平均数看,标准可以定为3小时.理由:平均数为2.7小时,说明该校学生目前每周劳动时间平均水平为2.7小时,把标准定为3小时,至少有30%的学生目前每周劳动时间能达标,同时至少还有51%的学生未达标,这样使多数学生有更高的努力目标.从中位数的范围或频数看,标准可以定为2小时.理由:该校学生目前每周劳动时间的中位数落在1.5≤x<2.5范围内,把标准定为2小时,至少有49%的学生目前劳动时间能达标,同时至少还有21%的学生未达标,这样有利于学生建立达标的信心,促进未达标学生努力达标,提高该校学生的劳动积极性.23.【答案】(1)证明:在正方形ABCD中,AB=BC,∠A=∠B=90°,又∵AB1=BC1=CD1=DA1=45AB,∴AA1=BB1=15AB.∴△AB1A1≌△BC1B1.∴A1B1=B1C1,∠AB1A1=∠BC1B1.又∵∠BC1B1+∠BB1C1=90°,∴∠BB1C1+∠AB1A1=90°.∴∠A1B1C1=90°.同理可证:B1C1=C1D1=D1A1=A1B1.∴四边形A1B1C1D1是正方形.(2)解:∵AA1=BB1=15AB,AB1=BC1=CD1=DA1=45AB,设AA1=a,则AB1=4a,AB=5a,∴A1B1=a2+16a2=17a∴A1B1AB=17a5a=175. (3)解:相邻线段的比为51717或175.理由:∵BB1=15AB,A1B1=17a,∴B1B2=15A1B1,A1B1AB=175,∴BB1B1B2=ABA1B1=5a17a=51717同理可得B2B1B2B3=51717∴相邻线段的比为51717或17524.【答案】(1)解:①由题意可知点A(2,2)是上边缘抛物线的顶点,∴设y=a(x-2)2+2,∵抛物线过点(0,1.5)∴4a+2=1.5解之:a=-18∴抛物线的解析式为y=-18(x-2)2+2,,当y=0时-18(x-2)2+2=0解之:x1=6,x2=-2(舍去)∴喷出水的最大射程OC为6m.②∵抛物线的对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5)∴下边缘抛物线是由上边缘抛物线向左平移4cm得到,∴点B(2,0)③∵EF=0.5,∴点F的纵坐标为0.5,当y=0.5时-18(x-2)2+2=0.5解之:x1=2+23,x2=2-23(舍去),当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5∴x≤2+23;∵ 当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+23,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+23-3=23-1在看下边缘抛物线,喷出的说能浇灌到绿化带底部的条件为OB≤d,∴d的最小值为2,∴d的取值范围为2≤d≤23-1.(2)解:当喷水口高度最低时,且恰好能浇灌到整个绿化带时,点D,F恰好分别在两条抛物线上,设点Dm,-18m+22+h+0.5,Fm+3,-18m+3-22+h+0.5∴-18m+3-22+h+0.5–18m+22+h+0.5=1解之:m=2.5,∴点D的纵坐标为h-6532,∴h-6532=0解之:h=6532∴h的最小值为6532.
简介:浙江省台州市2022年中考数学试卷一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算-2×(-3)的结果是(  )A.6B.-6C.5D.-52.如图是由四个相同的正方体搭成的立体图形,其主视图是(  )A.B.C.D.3.估计6的值应在(  )A.1和2之间B.2和3之间C.3和4之间D.4和5之4.如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是(  )A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°5.下列运算正确的是(  )A.a2⋅a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a26.如图是战机在空中展示的轴对称队形.以飞机B、C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为(  )A.(40,−a)B.(−40,a)C.(−40,−a)D.(a,−40)7.从A、B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是(  )A.平均数B.中位数C.众数D.方差8.吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是(  ) A.B.C.D.9.如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是(  )A.若AB=AC,AD⊥BC,则PB=PCB.若PB=PC,AD⊥BC,则AB=ACC.若AB=AC,∠1=∠2,则PB=PCD.若PB=PC,∠1=∠2,则AB=AC10.一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为(  )A.(840+6π)m2B.(840+9π)m2C.840m2D.876m2二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:a2−1=  .12.将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)掷一次,朝上一面点数是1的概率为  .13.如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为  .14.如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为  cm2.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x的值是  .先化简,再求值:3−xx−4+1,其中x=解:原式=3−xx−4⋅(x−4)+(x−4)…① =3−x+x−4=−116.如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为  ;当点M的位置变化时,DF长的最大值为  .三、解答题(共有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:9+|−5|−22.18.解方程组:x+2y=4x+3y=5.19.如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式;(2)若火焰的像高为3cm,求小孔到蜡烛的距离.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,连接AD.(1)求证:BD=CD;(2)若⊙O与AC相切,求∠B的度数;(3)用无刻度的直尺和圆规作出劣弧AD的中点E.(不写作法,保留作图痕迹)22.某中学为加强学生的劳动教育,需要制定学生每周劳动时间(单位:小时)的合格标准,为此随机调查了100名学生目前每周劳动时间,获得数据并整理成表格.学生目前每周劳动时间统计表 每周劳动时间x(小时)0.5≤x<1.51.5≤x<2.52.5≤x<3.53.5≤x<4.54.5≤x<5.5组中值12345人数(人)2130191812(1)画扇形图描述数据时,1.5≤x<2.5这组数据对应的扇形圆心角是多少度?(2)估计该校学生目前每周劳动时间的平均数;(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.23.图1中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图2,在正方形ABCD各边上分别取点B1,C1,D1,A1,使AB1=BC1=CD1=DA1=45AB,依次连接它们,得到四边形A1B1C1D1;再在四边形A1B1C1D1各边上分别取点B2,C2,D2,A2,使A1B2=B1C2=C1D2=D1A2=45A1B1,依次连接它们,得到四边形A2B2C2D2;…如此继续下去,得到四条螺旋折线.(1)求证:四边形A1B1C1D1是正方形;(2)求A1B1AB的值;(3)请研究螺旋折线BB1B2B3…中相邻线段之间的关系,写出一个正确结论并加以证明.24.如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m;①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值. 答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】B11.【答案】(a+1)(a−1)12.【答案】1613.【答案】1014.【答案】815.【答案】516.【答案】33;6-3317.【答案】原式=3+5-4=418.【答案】解:x+2y=4①x+3y=5②由②-①得y=1将y=1代入①得x+2=4解之:x=2∴原方程组的解为x=2y=1.19.【答案】解:在Rt△ABC中,∠A=75°,∴BC=ABsin∠A=3×sin75°≈3×0.97≈2.9m答:梯子的顶部离地面的垂直高度为2.9m 20.【答案】(1)解:∵y是关于x的反比例函数,设y与x之间的函数解析式为y=kx,当x=6时y=2∴k=2×6=12;∴函数解析式为y=12x(2)∵y=12x当y=3时3x=12,解之:x=4答:若火焰的像高为3cm,小孔到蜡烛的距离为4cm.21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD(2)∵⊙O与AC相切,∴BA⊥AC,∴∠BAC=90°,∵AB=AC,∴∠B=∠C=45°.∠B=45°(3)如下图,点E就是所要做的AD的中点. 22.【答案】(1)解:由题意得360°×30100×100%=108°.答:这组数据对应的扇形圆心角是108°.(2)答:x=1×21+2×30+3×19+4×18+5×12100=2.7答:该校学生目前每周劳动时间的平均数约为2.7小时.(3)制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心.从平均数看,标准可以定为3小时.理由:平均数为2.7小时,说明该校学生目前每周劳动时间平均水平为2.7小时,把标准定为3小时,至少有30%的学生目前每周劳动时间能达标,同时至少还有51%的学生未达标,这样使多数学生有更高的努力目标.从中位数的范围或频数看,标准可以定为2小时.理由:该校学生目前每周劳动时间的中位数落在1.5≤x<2.5范围内,把标准定为2小时,至少有49%的学生目前劳动时间能达标,同时至少还有21%的学生未达标,这样有利于学生建立达标的信心,促进未达标学生努力达标,提高该校学生的劳动积极性.23.【答案】(1)证明:在正方形ABCD中,AB=BC,∠A=∠B=90°,又∵AB1=BC1=CD1=DA1=45AB,∴AA1=BB1=15AB.∴△AB1A1≌△BC1B1.∴A1B1=B1C1,∠AB1A1=∠BC1B1.又∵∠BC1B1+∠BB1C1=90°,∴∠BB1C1+∠AB1A1=90°.∴∠A1B1C1=90°.同理可证:B1C1=C1D1=D1A1=A1B1.∴四边形A1B1C1D1是正方形.(2)解:∵AA1=BB1=15AB,AB1=BC1=CD1=DA1=45AB,设AA1=a,则AB1=4a,AB=5a,∴A1B1=a2+16a2=17a∴A1B1AB=17a5a=175. (3)解:相邻线段的比为51717或175.理由:∵BB1=15AB,A1B1=17a,∴B1B2=15A1B1,A1B1AB=175,∴BB1B1B2=ABA1B1=5a17a=51717同理可得B2B1B2B3=51717∴相邻线段的比为51717或17524.【答案】(1)解:①由题意可知点A(2,2)是上边缘抛物线的顶点,∴设y=a(x-2)2+2,∵抛物线过点(0,1.5)∴4a+2=1.5解之:a=-18∴抛物线的解析式为y=-18(x-2)2+2,,当y=0时-18(x-2)2+2=0解之:x1=6,x2=-2(舍去)∴喷出水的最大射程OC为6m.②∵抛物线的对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5)∴下边缘抛物线是由上边缘抛物线向左平移4cm得到,∴点B(2,0)③∵EF=0.5,∴点F的纵坐标为0.5,当y=0.5时-18(x-2)2+2=0.5解之:x1=2+23,x2=2-23(舍去),当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5∴x≤2+23;∵ 当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+23,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+23-3=23-1在看下边缘抛物线,喷出的说能浇灌到绿化带底部的条件为OB≤d,∴d的最小值为2,∴d的取值范围为2≤d≤23-1.(2)解:当喷水口高度最低时,且恰好能浇灌到整个绿化带时,点D,F恰好分别在两条抛物线上,设点Dm,-18m+22+h+0.5,Fm+3,-18m+3-22+h+0.5∴-18m+3-22+h+0.5–18m+22+h+0.5=1解之:m=2.5,∴点D的纵坐标为h-6532,∴h-6532=0解之:h=6532∴h的最小值为6532.
简介:浙江省台州市2022年中考数学试卷一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算-2×(-3)的结果是(  )A.6B.-6C.5D.-52.如图是由四个相同的正方体搭成的立体图形,其主视图是(  )A.B.C.D.3.估计6的值应在(  )A.1和2之间B.2和3之间C.3和4之间D.4和5之4.如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是(  )A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°5.下列运算正确的是(  )A.a2⋅a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a26.如图是战机在空中展示的轴对称队形.以飞机B、C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为(  )A.(40,−a)B.(−40,a)C.(−40,−a)D.(a,−40)7.从A、B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是(  )A.平均数B.中位数C.众数D.方差8.吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是(  ) A.B.C.D.9.如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是(  )A.若AB=AC,AD⊥BC,则PB=PCB.若PB=PC,AD⊥BC,则AB=ACC.若AB=AC,∠1=∠2,则PB=PCD.若PB=PC,∠1=∠2,则AB=AC10.一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为(  )A.(840+6π)m2B.(840+9π)m2C.840m2D.876m2二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:a2−1=  .12.将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)掷一次,朝上一面点数是1的概率为  .13.如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为  .14.如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为  cm2.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x的值是  .先化简,再求值:3−xx−4+1,其中x=解:原式=3−xx−4⋅(x−4)+(x−4)…① =3−x+x−4=−116.如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为  ;当点M的位置变化时,DF长的最大值为  .三、解答题(共有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:9+|−5|−22.18.解方程组:x+2y=4x+3y=5.19.如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式;(2)若火焰的像高为3cm,求小孔到蜡烛的距离.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,连接AD.(1)求证:BD=CD;(2)若⊙O与AC相切,求∠B的度数;(3)用无刻度的直尺和圆规作出劣弧AD的中点E.(不写作法,保留作图痕迹)22.某中学为加强学生的劳动教育,需要制定学生每周劳动时间(单位:小时)的合格标准,为此随机调查了100名学生目前每周劳动时间,获得数据并整理成表格.学生目前每周劳动时间统计表 每周劳动时间x(小时)0.5≤x<1.51.5≤x<2.52.5≤x<3.53.5≤x<4.54.5≤x<5.5组中值12345人数(人)2130191812(1)画扇形图描述数据时,1.5≤x<2.5这组数据对应的扇形圆心角是多少度?(2)估计该校学生目前每周劳动时间的平均数;(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.23.图1中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图2,在正方形ABCD各边上分别取点B1,C1,D1,A1,使AB1=BC1=CD1=DA1=45AB,依次连接它们,得到四边形A1B1C1D1;再在四边形A1B1C1D1各边上分别取点B2,C2,D2,A2,使A1B2=B1C2=C1D2=D1A2=45A1B1,依次连接它们,得到四边形A2B2C2D2;…如此继续下去,得到四条螺旋折线.(1)求证:四边形A1B1C1D1是正方形;(2)求A1B1AB的值;(3)请研究螺旋折线BB1B2B3…中相邻线段之间的关系,写出一个正确结论并加以证明.24.如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m;①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值. 答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】B11.【答案】(a+1)(a−1)12.【答案】1613.【答案】1014.【答案】815.【答案】516.【答案】33;6-3317.【答案】原式=3+5-4=418.【答案】解:x+2y=4①x+3y=5②由②-①得y=1将y=1代入①得x+2=4解之:x=2∴原方程组的解为x=2y=1.19.【答案】解:在Rt△ABC中,∠A=75°,∴BC=ABsin∠A=3×sin75°≈3×0.97≈2.9m答:梯子的顶部离地面的垂直高度为2.9m 20.【答案】(1)解:∵y是关于x的反比例函数,设y与x之间的函数解析式为y=kx,当x=6时y=2∴k=2×6=12;∴函数解析式为y=12x(2)∵y=12x当y=3时3x=12,解之:x=4答:若火焰的像高为3cm,小孔到蜡烛的距离为4cm.21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD(2)∵⊙O与AC相切,∴BA⊥AC,∴∠BAC=90°,∵AB=AC,∴∠B=∠C=45°.∠B=45°(3)如下图,点E就是所要做的AD的中点. 22.【答案】(1)解:由题意得360°×30100×100%=108°.答:这组数据对应的扇形圆心角是108°.(2)答:x=1×21+2×30+3×19+4×18+5×12100=2.7答:该校学生目前每周劳动时间的平均数约为2.7小时.(3)制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心.从平均数看,标准可以定为3小时.理由:平均数为2.7小时,说明该校学生目前每周劳动时间平均水平为2.7小时,把标准定为3小时,至少有30%的学生目前每周劳动时间能达标,同时至少还有51%的学生未达标,这样使多数学生有更高的努力目标.从中位数的范围或频数看,标准可以定为2小时.理由:该校学生目前每周劳动时间的中位数落在1.5≤x<2.5范围内,把标准定为2小时,至少有49%的学生目前劳动时间能达标,同时至少还有21%的学生未达标,这样有利于学生建立达标的信心,促进未达标学生努力达标,提高该校学生的劳动积极性.23.【答案】(1)证明:在正方形ABCD中,AB=BC,∠A=∠B=90°,又∵AB1=BC1=CD1=DA1=45AB,∴AA1=BB1=15AB.∴△AB1A1≌△BC1B1.∴A1B1=B1C1,∠AB1A1=∠BC1B1.又∵∠BC1B1+∠BB1C1=90°,∴∠BB1C1+∠AB1A1=90°.∴∠A1B1C1=90°.同理可证:B1C1=C1D1=D1A1=A1B1.∴四边形A1B1C1D1是正方形.(2)解:∵AA1=BB1=15AB,AB1=BC1=CD1=DA1=45AB,设AA1=a,则AB1=4a,AB=5a,∴A1B1=a2+16a2=17a∴A1B1AB=17a5a=175. (3)解:相邻线段的比为51717或175.理由:∵BB1=15AB,A1B1=17a,∴B1B2=15A1B1,A1B1AB=175,∴BB1B1B2=ABA1B1=5a17a=51717同理可得B2B1B2B3=51717∴相邻线段的比为51717或17524.【答案】(1)解:①由题意可知点A(2,2)是上边缘抛物线的顶点,∴设y=a(x-2)2+2,∵抛物线过点(0,1.5)∴4a+2=1.5解之:a=-18∴抛物线的解析式为y=-18(x-2)2+2,,当y=0时-18(x-2)2+2=0解之:x1=6,x2=-2(舍去)∴喷出水的最大射程OC为6m.②∵抛物线的对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5)∴下边缘抛物线是由上边缘抛物线向左平移4cm得到,∴点B(2,0)③∵EF=0.5,∴点F的纵坐标为0.5,当y=0.5时-18(x-2)2+2=0.5解之:x1=2+23,x2=2-23(舍去),当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5∴x≤2+23;∵ 当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+23,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+23-3=23-1在看下边缘抛物线,喷出的说能浇灌到绿化带底部的条件为OB≤d,∴d的最小值为2,∴d的取值范围为2≤d≤23-1.(2)解:当喷水口高度最低时,且恰好能浇灌到整个绿化带时,点D,F恰好分别在两条抛物线上,设点Dm,-18m+22+h+0.5,Fm+3,-18m+3-22+h+0.5∴-18m+3-22+h+0.5–18m+22+h+0.5=1解之:m=2.5,∴点D的纵坐标为h-6532,∴h-6532=0解之:h=6532∴h的最小值为6532.
简介:浙江省台州市2022年中考数学试卷一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算-2×(-3)的结果是(  )A.6B.-6C.5D.-52.如图是由四个相同的正方体搭成的立体图形,其主视图是(  )A.B.C.D.3.估计6的值应在(  )A.1和2之间B.2和3之间C.3和4之间D.4和5之4.如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是(  )A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°5.下列运算正确的是(  )A.a2⋅a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a26.如图是战机在空中展示的轴对称队形.以飞机B、C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为(  )A.(40,−a)B.(−40,a)C.(−40,−a)D.(a,−40)7.从A、B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是(  )A.平均数B.中位数C.众数D.方差8.吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是(  ) A.B.C.D.9.如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是(  )A.若AB=AC,AD⊥BC,则PB=PCB.若PB=PC,AD⊥BC,则AB=ACC.若AB=AC,∠1=∠2,则PB=PCD.若PB=PC,∠1=∠2,则AB=AC10.一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为(  )A.(840+6π)m2B.(840+9π)m2C.840m2D.876m2二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:a2−1=  .12.将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)掷一次,朝上一面点数是1的概率为  .13.如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为  .14.如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为  cm2.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x的值是  .先化简,再求值:3−xx−4+1,其中x=解:原式=3−xx−4⋅(x−4)+(x−4)…① =3−x+x−4=−116.如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为  ;当点M的位置变化时,DF长的最大值为  .三、解答题(共有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:9+|−5|−22.18.解方程组:x+2y=4x+3y=5.19.如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式;(2)若火焰的像高为3cm,求小孔到蜡烛的距离.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,连接AD.(1)求证:BD=CD;(2)若⊙O与AC相切,求∠B的度数;(3)用无刻度的直尺和圆规作出劣弧AD的中点E.(不写作法,保留作图痕迹)22.某中学为加强学生的劳动教育,需要制定学生每周劳动时间(单位:小时)的合格标准,为此随机调查了100名学生目前每周劳动时间,获得数据并整理成表格.学生目前每周劳动时间统计表 每周劳动时间x(小时)0.5≤x<1.51.5≤x<2.52.5≤x<3.53.5≤x<4.54.5≤x<5.5组中值12345人数(人)2130191812(1)画扇形图描述数据时,1.5≤x<2.5这组数据对应的扇形圆心角是多少度?(2)估计该校学生目前每周劳动时间的平均数;(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.23.图1中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图2,在正方形ABCD各边上分别取点B1,C1,D1,A1,使AB1=BC1=CD1=DA1=45AB,依次连接它们,得到四边形A1B1C1D1;再在四边形A1B1C1D1各边上分别取点B2,C2,D2,A2,使A1B2=B1C2=C1D2=D1A2=45A1B1,依次连接它们,得到四边形A2B2C2D2;…如此继续下去,得到四条螺旋折线.(1)求证:四边形A1B1C1D1是正方形;(2)求A1B1AB的值;(3)请研究螺旋折线BB1B2B3…中相邻线段之间的关系,写出一个正确结论并加以证明.24.如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m;①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值. 答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】B11.【答案】(a+1)(a−1)12.【答案】1613.【答案】1014.【答案】815.【答案】516.【答案】33;6-3317.【答案】原式=3+5-4=418.【答案】解:x+2y=4①x+3y=5②由②-①得y=1将y=1代入①得x+2=4解之:x=2∴原方程组的解为x=2y=1.19.【答案】解:在Rt△ABC中,∠A=75°,∴BC=ABsin∠A=3×sin75°≈3×0.97≈2.9m答:梯子的顶部离地面的垂直高度为2.9m 20.【答案】(1)解:∵y是关于x的反比例函数,设y与x之间的函数解析式为y=kx,当x=6时y=2∴k=2×6=12;∴函数解析式为y=12x(2)∵y=12x当y=3时3x=12,解之:x=4答:若火焰的像高为3cm,小孔到蜡烛的距离为4cm.21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD(2)∵⊙O与AC相切,∴BA⊥AC,∴∠BAC=90°,∵AB=AC,∴∠B=∠C=45°.∠B=45°(3)如下图,点E就是所要做的AD的中点. 22.【答案】(1)解:由题意得360°×30100×100%=108°.答:这组数据对应的扇形圆心角是108°.(2)答:x=1×21+2×30+3×19+4×18+5×12100=2.7答:该校学生目前每周劳动时间的平均数约为2.7小时.(3)制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心.从平均数看,标准可以定为3小时.理由:平均数为2.7小时,说明该校学生目前每周劳动时间平均水平为2.7小时,把标准定为3小时,至少有30%的学生目前每周劳动时间能达标,同时至少还有51%的学生未达标,这样使多数学生有更高的努力目标.从中位数的范围或频数看,标准可以定为2小时.理由:该校学生目前每周劳动时间的中位数落在1.5≤x<2.5范围内,把标准定为2小时,至少有49%的学生目前劳动时间能达标,同时至少还有21%的学生未达标,这样有利于学生建立达标的信心,促进未达标学生努力达标,提高该校学生的劳动积极性.23.【答案】(1)证明:在正方形ABCD中,AB=BC,∠A=∠B=90°,又∵AB1=BC1=CD1=DA1=45AB,∴AA1=BB1=15AB.∴△AB1A1≌△BC1B1.∴A1B1=B1C1,∠AB1A1=∠BC1B1.又∵∠BC1B1+∠BB1C1=90°,∴∠BB1C1+∠AB1A1=90°.∴∠A1B1C1=90°.同理可证:B1C1=C1D1=D1A1=A1B1.∴四边形A1B1C1D1是正方形.(2)解:∵AA1=BB1=15AB,AB1=BC1=CD1=DA1=45AB,设AA1=a,则AB1=4a,AB=5a,∴A1B1=a2+16a2=17a∴A1B1AB=17a5a=175. (3)解:相邻线段的比为51717或175.理由:∵BB1=15AB,A1B1=17a,∴B1B2=15A1B1,A1B1AB=175,∴BB1B1B2=ABA1B1=5a17a=51717同理可得B2B1B2B3=51717∴相邻线段的比为51717或17524.【答案】(1)解:①由题意可知点A(2,2)是上边缘抛物线的顶点,∴设y=a(x-2)2+2,∵抛物线过点(0,1.5)∴4a+2=1.5解之:a=-18∴抛物线的解析式为y=-18(x-2)2+2,,当y=0时-18(x-2)2+2=0解之:x1=6,x2=-2(舍去)∴喷出水的最大射程OC为6m.②∵抛物线的对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5)∴下边缘抛物线是由上边缘抛物线向左平移4cm得到,∴点B(2,0)③∵EF=0.5,∴点F的纵坐标为0.5,当y=0.5时-18(x-2)2+2=0.5解之:x1=2+23,x2=2-23(舍去),当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5∴x≤2+23;∵ 当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+23,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+23-3=23-1在看下边缘抛物线,喷出的说能浇灌到绿化带底部的条件为OB≤d,∴d的最小值为2,∴d的取值范围为2≤d≤23-1.(2)解:当喷水口高度最低时,且恰好能浇灌到整个绿化带时,点D,F恰好分别在两条抛物线上,设点Dm,-18m+22+h+0.5,Fm+3,-18m+3-22+h+0.5∴-18m+3-22+h+0.5–18m+22+h+0.5=1解之:m=2.5,∴点D的纵坐标为h-6532,∴h-6532=0解之:h=6532∴h的最小值为6532.
简介:浙江省台州市2022年中考数学试卷一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算-2×(-3)的结果是(  )A.6B.-6C.5D.-52.如图是由四个相同的正方体搭成的立体图形,其主视图是(  )A.B.C.D.3.估计6的值应在(  )A.1和2之间B.2和3之间C.3和4之间D.4和5之4.如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是(  )A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°5.下列运算正确的是(  )A.a2⋅a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a26.如图是战机在空中展示的轴对称队形.以飞机B、C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为(  )A.(40,−a)B.(−40,a)C.(−40,−a)D.(a,−40)7.从A、B两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是(  )A.平均数B.中位数C.众数D.方差8.吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是(  ) A.B.C.D.9.如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是(  )A.若AB=AC,AD⊥BC,则PB=PCB.若PB=PC,AD⊥BC,则AB=ACC.若AB=AC,∠1=∠2,则PB=PCD.若PB=PC,∠1=∠2,则AB=AC10.一个垃圾填埋场,它在地面上的形状为长80m,宽60m的矩形,有污水从该矩形的四周边界向外渗透了3m,则该垃圾填埋场外围受污染土地的面积为(  )A.(840+6π)m2B.(840+9π)m2C.840m2D.876m2二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:a2−1=  .12.将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)掷一次,朝上一面点数是1的概率为  .13.如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为  .14.如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为  cm2.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x的值是  .先化简,再求值:3−xx−4+1,其中x=解:原式=3−xx−4⋅(x−4)+(x−4)…① =3−x+x−4=−116.如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为  ;当点M的位置变化时,DF长的最大值为  .三、解答题(共有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:9+|−5|−22.18.解方程组:x+2y=4x+3y=5.19.如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式;(2)若火焰的像高为3cm,求小孔到蜡烛的距离.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,连接AD.(1)求证:BD=CD;(2)若⊙O与AC相切,求∠B的度数;(3)用无刻度的直尺和圆规作出劣弧AD的中点E.(不写作法,保留作图痕迹)22.某中学为加强学生的劳动教育,需要制定学生每周劳动时间(单位:小时)的合格标准,为此随机调查了100名学生目前每周劳动时间,获得数据并整理成表格.学生目前每周劳动时间统计表 每周劳动时间x(小时)0.5≤x<1.51.5≤x<2.52.5≤x<3.53.5≤x<4.54.5≤x<5.5组中值12345人数(人)2130191812(1)画扇形图描述数据时,1.5≤x<2.5这组数据对应的扇形圆心角是多少度?(2)估计该校学生目前每周劳动时间的平均数;(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.23.图1中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图2,在正方形ABCD各边上分别取点B1,C1,D1,A1,使AB1=BC1=CD1=DA1=45AB,依次连接它们,得到四边形A1B1C1D1;再在四边形A1B1C1D1各边上分别取点B2,C2,D2,A2,使A1B2=B1C2=C1D2=D1A2=45A1B1,依次连接它们,得到四边形A2B2C2D2;…如此继续下去,得到四条螺旋折线.(1)求证:四边形A1B1C1D1是正方形;(2)求A1B1AB的值;(3)请研究螺旋折线BB1B2B3…中相邻线段之间的关系,写出一个正确结论并加以证明.24.如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m;①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值. 答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】B11.【答案】(a+1)(a−1)12.【答案】1613.【答案】1014.【答案】815.【答案】516.【答案】33;6-3317.【答案】原式=3+5-4=418.【答案】解:x+2y=4①x+3y=5②由②-①得y=1将y=1代入①得x+2=4解之:x=2∴原方程组的解为x=2y=1.19.【答案】解:在Rt△ABC中,∠A=75°,∴BC=ABsin∠A=3×sin75°≈3×0.97≈2.9m答:梯子的顶部离地面的垂直高度为2.9m 20.【答案】(1)解:∵y是关于x的反比例函数,设y与x之间的函数解析式为y=kx,当x=6时y=2∴k=2×6=12;∴函数解析式为y=12x(2)∵y=12x当y=3时3x=12,解之:x=4答:若火焰的像高为3cm,小孔到蜡烛的距离为4cm.21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD(2)∵⊙O与AC相切,∴BA⊥AC,∴∠BAC=90°,∵AB=AC,∴∠B=∠C=45°.∠B=45°(3)如下图,点E就是所要做的AD的中点. 22.【答案】(1)解:由题意得360°×30100×100%=108°.答:这组数据对应的扇形圆心角是108°.(2)答:x=1×21+2×30+3×19+4×18+5×12100=2.7答:该校学生目前每周劳动时间的平均数约为2.7小时.(3)制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心.从平均数看,标准可以定为3小时.理由:平均数为2.7小时,说明该校学生目前每周劳动时间平均水平为2.7小时,把标准定为3小时,至少有30%的学生目前每周劳动时间能达标,同时至少还有51%的学生未达标,这样使多数学生有更高的努力目标.从中位数的范围或频数看,标准可以定为2小时.理由:该校学生目前每周劳动时间的中位数落在1.5≤x<2.5范围内,把标准定为2小时,至少有49%的学生目前劳动时间能达标,同时至少还有21%的学生未达标,这样有利于学生建立达标的信心,促进未达标学生努力达标,提高该校学生的劳动积极性.23.【答案】(1)证明:在正方形ABCD中,AB=BC,∠A=∠B=90°,又∵AB1=BC1=CD1=DA1=45AB,∴AA1=BB1=15AB.∴△AB1A1≌△BC1B1.∴A1B1=B1C1,∠AB1A1=∠BC1B1.又∵∠BC1B1+∠BB1C1=90°,∴∠BB1C1+∠AB1A1=90°.∴∠A1B1C1=90°.同理可证:B1C1=C1D1=D1A1=A1B1.∴四边形A1B1C1D1是正方形.(2)解:∵AA1=BB1=15AB,AB1=BC1=CD1=DA1=45AB,设AA1=a,则AB1=4a,AB=5a,∴A1B1=a2+16a2=17a∴A1B1AB=17a5a=175. (3)解:相邻线段的比为51717或175.理由:∵BB1=15AB,A1B1=17a,∴B1B2=15A1B1,A1B1AB=175,∴BB1B1B2=ABA1B1=5a17a=51717同理可得B2B1B2B3=51717∴相邻线段的比为51717或17524.【答案】(1)解:①由题意可知点A(2,2)是上边缘抛物线的顶点,∴设y=a(x-2)2+2,∵抛物线过点(0,1.5)∴4a+2=1.5解之:a=-18∴抛物线的解析式为y=-18(x-2)2+2,,当y=0时-18(x-2)2+2=0解之:x1=6,x2=-2(舍去)∴喷出水的最大射程OC为6m.②∵抛物线的对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5)∴下边缘抛物线是由上边缘抛物线向左平移4cm得到,∴点B(2,0)③∵EF=0.5,∴点F的纵坐标为0.5,当y=0.5时-18(x-2)2+2=0.5解之:x1=2+23,x2=2-23(舍去),当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5∴x≤2+23;∵ 当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+23,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+23-3=23-1在看下边缘抛物线,喷出的说能浇灌到绿化带底部的条件为OB≤d,∴d的最小值为2,∴d的取值范围为2≤d≤23-1.(2)解:当喷水口高度最低时,且恰好能浇灌到整个绿化带时,点D,F恰好分别在两条抛物线上,设点Dm,-18m+22+h+0.5,Fm+3,-18m+3-22+h+0.5∴-18m+3-22+h+0.5–18m+22+h+0.5=1解之:m=2.5,∴点D的纵坐标为h-6532,∴h-6532=0解之:h=6532∴h的最小值为6532.