数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)解析版
陕西省宝鸡市陈仓区2022届高三下学期理数二模试卷一、单选题1.已知集合A={x|x(2−x)>0},集合B={x|y=x−2}则A∪B=( )A.(-∞,0)∪[2,+∞)B.(0,2]C.(0,2)D.(0,+∞)【答案】D【知
数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)一、解答题1.已知{a}为等差数列,{b}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|bk=am
简介:数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)一、解答题1.已知{an}为等差数列,{bn}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|bk=am+a1,1≤m≤500}中元素个数.2.记Sn为数列{an}的前n项和.已知2Snn+n=2an+1.(1)证明:{an}是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.3.记Sn为数列{an}的前n项和,已知a1=1,{Snan}是公差为13,的等差数列.(1)求{an}的通项公式;(2)证明:1a1+1a2+⋯+1an<24.记Sn是公差不为0的等差数列{an}的前n项和,若a3=S5,a2a4=S4.(1)求数列{an}的通项公式an;(2)求使Sn>an成立的n的最小值.5.设{an}是首项为1的等比数列,数列{bn}满足bn=nan3,已知a1,3a2,9a3成等差数列.(1)求{an}和{bn}的通项公式;(2)记Sn和Tn分别为{an}和{bn}的前n项和.证明:Tn 0,a2=3a1,且数列{Sn}是等差数列.证明:{an}是等差数列.7.已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列:②数列{Sn}是等差数列;③a2=3a1注:若选择不同的组合分别解答,则按第一个解答计分.8.记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2Sn+1bn=2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式. 9.已知{an}是公差为2的等差数列,其前8项和为64.{bn}是公比大于0的等比数列,b1=4,b3−b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1bn,n∈N*.(i)证明{cn2−c2n}是等比数列;(ii)证明k=1nakak+1ck2−c2k<22(n∈N*)10.已知数列{an}满足a1=1,an+1={an+1,n为奇数an+2,n为偶数(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和11.设数列{an}满足a1=3,an+1=3an−4n.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.12.设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{an}的公比;(2)若a1=1,求数列{nan}的前n项和.13.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)求a1a2−a2a3+…+(−1)n−1anan+1.14.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前100项和S100.15.已知{an}为等差数列,{bn}为等比数列,a1=b1=1,a5=5(a4−a3),b5=4(b4−b3).(Ⅰ)求{an}和{bn}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求证:SnSn+2 0,所以2−2n+1<2,即1a1+1a2+⋯+1an<2.4.【答案】(1)由等差数列的性质可得:S5=5a3,则:a3=5a3,∴a3=0,设等差数列的公差为d,从而有:a2a4=(a3−d)(a3+d)=−d2,S4=a1+a2+a3+a4=(a3−2d)+(a3−d)+a3+(a3−d)=−2d,从而:−d2=−2d,由于公差不为零,故:d=2,数列的通项公式为:an=a3+(n−3)d=2n−6.(2)由数列的通项公式可得:a1=2−6=−4,则:Sn=n×(−4)+n(n−1)2×2=n2−6n, 则不等式Sn>an即:n2−5n>2n−6,整理可得:(n−1)(n−6)>0,解得:n<1或n>6,又n为正整数,故n的最小值为7.5.【答案】(1)因为{an}是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2−6q+1=0,解得q=13,所以an=(13)n−1,所以bn=nan3=n3n.(2)证明:由(1)可得Sn=1×(1−13n)1−13=32(1−13n),Tn=13+232+⋯+n−13n−1+n3n,①13Tn=132+233+⋯+n−13n+n3n+1,②①−②得23Tn=13+132+133+⋯+13n−n3n+1=13(1−13n)1−13−n3n+1=12(1−13n)−n3n+1,所以Tn=34(1−13n)−n2⋅3n,所以Tn−Sn2=34(1−13n)−n2⋅3n−34(1−13n)=−n2⋅3n<0,所以Tn 0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为{an}也是等差数列,所以(a+b)2=a(2a−a+2b),解得b=0; 所以an=a2(2n−1),所以a2=3a1.选①③作条件证明②:因为a2=3a1,{an}是等差数列,所以公差d=a2−a1=2a1,所以Sn=na1+n(n−1)2d=n2a1,即Sn=a1n,因为Sn+1−Sn=a1(n+1)−a1n=a1,所以{Sn}是等差数列.选②③作条件证明①:设Sn=an+b(a>0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为a2=3a1,所以a(3a+2b)=3(a+b)2,解得b=0或b=−4a3;当b=0时,a1=a2,an=a2(2n−1),当n≥2时,an-an-1=2a2满足等差数列的定义,此时{an}为等差数列;当b=−4a3时,Sn=an+b=an−43a,S1=−a3<0不合题意,舍去.综上可知{an}为等差数列.8.【答案】(1)由已知2Sn+1bn=2,则bnbn-1=Sn(n≥2)⇒2bn−1bn+1bn=2⇒2bn-1+2=2bn⇒bn-bn-1=12(n≥2),b1=32故{bn}是以32为首项,12为公差的等差数列。(2)由(1)知bn=32+(n-1)12=n+22,则2Sn+2n+2=2⇒Sn=n+2n+1n=1时,a1=S1=32n≥2时,an=Sn-Sn-1=n+2n+1-n+1n=−1n(n+1)故an=32,n=1−1n(n+1),n≥29.【答案】(1)因为{an}是公差为2的等差数列,其前8项和为64.所以a1+a2+⋅⋅⋅+a8=8a1+8×72×2=64,所以a1=1,所以an=a1+2(n−1)=2n−1,n∈N∗; 设等比数列{bn}的公比为q,(q>0),所以b3−b2=b1q2−b1q=4(q2−q)=48,解得q=4(负值舍去),所以bn=b1qn−1=4n,n∈N∗;(2)(i)由题意,cn=b2n+1bn=42n+14n,所以cn2−c2n=(42n+14n)2−(44n+142n)=2⋅4n,所以cn2−c2n≠0,且cn+12−c2n+2cn2−c2n=2⋅4n+12⋅4n=4,所以数列{cn2−c2n}是等比数列;(ii)由题意知,anan+1cn2−c2n=(2n−1)(2n+1)2⋅4n=4n2−12⋅22n<4n22⋅22n,所以anan+1cn2−c2n<4n22⋅22n=2n2⋅2n=12⋅n2n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1,设Tn=k=1nk2k−1=120+221+322+⋅⋅⋅+n2n−1,则12Tn=121+222+323+⋅⋅⋅+n2n,两式相减得12Tn=1+12+122+⋅⋅⋅+12n−1−n2n=1⋅(1−12n)1−12−n2n=2−n+22n,所以Tn=4−n+22n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1=12(4−n+22n−1)<22.10.【答案】(1)2n为偶数,则a2n+1=a2n+2,a2n+2=a2n+1+1,∴ a2n+2=a2n+3,即bn+1=bn+3,且b1=a2=a1+1=2,∴{bn}是以2为首项,3为公差的等差数列,∴b1=2,b2=5,bn=3n−1.(2)当n为奇数时,an=an+1−1,∴{an}的前20项和为a1+a2+⋯+a20=(a1+a3+⋯+a19)+(a2+a4+⋯+a20)=[(a2−1)+(a4−1)+⋯+(a20−1)]+(a2+a4+⋯+a20)=2(a2+a4+⋯+a20)−10. 由(1)可知,a2+a4+⋯+a20=b1+b2+⋯+b10=2×10+10×92×3=155.∴{an}的前20项和为2×155−10=300.11.【答案】(1)解:由题意可得a2=3a1−4=9−4=5,a3=3a2−8=15−8=7,由数列{an}的前三项可猜想数列{an}是以3为首项,2为公差的等差数列,即an=2n+1,证明如下:当n=1时,a1=3成立;假设n=k时,ak=2k+1成立.那么n=k+1时,ak+1=3ak−4k=3(2k+1)−4k=2k+3=2(k+1)+1也成立.则对任意的n∈N*,都有an=2n+1成立(2)解:由(1)可知,an⋅2n=(2n+1)⋅2nSn=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2Sn=3×22+5×23+7×24+⋯+(2n−1)⋅2n+(2n+1)⋅2n+1,②由①−②得:−Sn=6+2×(22+23+⋯+2n)−(2n+1)⋅2n+1=6+2×22×(1−2n−1)1−2−(2n+1)⋅2n+1=(1−2n)⋅2n+1−2,即Sn=(2n−1)⋅2n+1+2.12.【答案】(1)解:设{an}的公比为q,a1为a2,a3的等差中项,∵2a1=a2+a3,a1≠0,∴q2+q−2=0,∵q≠1,∴q=−2;(2)解:设{nan}的前n项和为Sn,a1=1,an=(−2)n−1,Sn=1×1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,①−2Sn=1×(−2)+2×(−2)2+3×(−2)3+⋯(n−1)(−2)n−1+n(−2)n,②①−②得,3Sn=1+(−2)+(−2)2+⋯+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(1+3n)(−2)n3,∴Sn=1−(1+3n)(−2)n9.13.【答案】(1)解:设等比数列{an}的公比为q(q>1),则a2+a4=a1q+a1q3=20a3=a1q2=8,整理可得:2q2−5q+2=0,∵q>1,q=2,a1=2,数列的通项公式为:an=2⋅2n−1=2n. (2)解:由于:(−1)n−1anan+1=(−1)n−1×2n×2n+1=(−1)n−122n+1,故:a1a2−a2a3+…+(−1)n−1anan+1=23−25+27−29+…+(−1)n−1⋅22n+1=23[1−(−22)n]1−(−22)=85−(−1)n22n+35.14.【答案】(1)解:由于数列{an}是公比大于1的等比数列,设首项为a1,公比为q,依题意有a1q+a1q3=20a1q2=8,解得解得a1=2,q=2,或a1=32,q=12(舍),所以an=2n,所以数列{an}的通项公式为an=2n.(2)解:由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b1对应的区间为:(0,1],则b1=0;b2,b3对应的区间分别为:(0,2],(0,3],则b2=b3=1,即有2个1;b4,b5,b6,b7对应的区间分别为:(0,4],(0,5],(0,6],(0,7],则b4=b5=b6=b7=2,即有22个2;b8,b9,⋯,b15对应的区间分别为:(0,8],(0,9],⋯,(0,15],则b8=b9=⋯=b15=3,即有23个3;b16,b17,⋯,b31对应的区间分别为:(0,16],(0,17],⋯,(0,31],则b16=b17=⋯=b31=4,即有24个4;b32,b33,⋯,b63对应的区间分别为:(0,32],(0,33],⋯,(0,63],则b32=b33=⋯=b63=5,即有25个5;b64,b65,⋯,b100对应的区间分别为:(0,64],(0,65],⋯,(0,100],则b64=b65=⋯=b100=6,即有37个6.所以S100=1×2+2×22+3×23+4×24+5×25+6×37=480.15.【答案】解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由a1=1,a5=5(a4−a3),可得d=1.从而{an}的通项公式为an=n.由b1=1,b5=4(b4−b3),又q≠0,可得q2−4q+4=0,解得q=2,从而{bn}的通项公式为bn=2n−1.(Ⅱ)证明:由(Ⅰ)可得Sn=n(n+1)2,故SnSn+2=14n(n+1)(n+2)(n+3),Sn+12=14(n+1)2(n+2)2, 从而SnSn+2−Sn+12=−12(n+1)(n+2)<0,所以SnSn+2 更多>>
简介:数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)一、解答题1.已知{an}为等差数列,{bn}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|bk=am+a1,1≤m≤500}中元素个数.2.记Sn为数列{an}的前n项和.已知2Snn+n=2an+1.(1)证明:{an}是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.3.记Sn为数列{an}的前n项和,已知a1=1,{Snan}是公差为13,的等差数列.(1)求{an}的通项公式;(2)证明:1a1+1a2+⋯+1an<24.记Sn是公差不为0的等差数列{an}的前n项和,若a3=S5,a2a4=S4.(1)求数列{an}的通项公式an;(2)求使Sn>an成立的n的最小值.5.设{an}是首项为1的等比数列,数列{bn}满足bn=nan3,已知a1,3a2,9a3成等差数列.(1)求{an}和{bn}的通项公式;(2)记Sn和Tn分别为{an}和{bn}的前n项和.证明:Tn 0,a2=3a1,且数列{Sn}是等差数列.证明:{an}是等差数列.7.已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列:②数列{Sn}是等差数列;③a2=3a1注:若选择不同的组合分别解答,则按第一个解答计分.8.记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2Sn+1bn=2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式. 9.已知{an}是公差为2的等差数列,其前8项和为64.{bn}是公比大于0的等比数列,b1=4,b3−b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1bn,n∈N*.(i)证明{cn2−c2n}是等比数列;(ii)证明k=1nakak+1ck2−c2k<22(n∈N*)10.已知数列{an}满足a1=1,an+1={an+1,n为奇数an+2,n为偶数(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和11.设数列{an}满足a1=3,an+1=3an−4n.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.12.设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{an}的公比;(2)若a1=1,求数列{nan}的前n项和.13.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)求a1a2−a2a3+…+(−1)n−1anan+1.14.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前100项和S100.15.已知{an}为等差数列,{bn}为等比数列,a1=b1=1,a5=5(a4−a3),b5=4(b4−b3).(Ⅰ)求{an}和{bn}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求证:SnSn+2 0,所以2−2n+1<2,即1a1+1a2+⋯+1an<2.4.【答案】(1)由等差数列的性质可得:S5=5a3,则:a3=5a3,∴a3=0,设等差数列的公差为d,从而有:a2a4=(a3−d)(a3+d)=−d2,S4=a1+a2+a3+a4=(a3−2d)+(a3−d)+a3+(a3−d)=−2d,从而:−d2=−2d,由于公差不为零,故:d=2,数列的通项公式为:an=a3+(n−3)d=2n−6.(2)由数列的通项公式可得:a1=2−6=−4,则:Sn=n×(−4)+n(n−1)2×2=n2−6n, 则不等式Sn>an即:n2−5n>2n−6,整理可得:(n−1)(n−6)>0,解得:n<1或n>6,又n为正整数,故n的最小值为7.5.【答案】(1)因为{an}是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2−6q+1=0,解得q=13,所以an=(13)n−1,所以bn=nan3=n3n.(2)证明:由(1)可得Sn=1×(1−13n)1−13=32(1−13n),Tn=13+232+⋯+n−13n−1+n3n,①13Tn=132+233+⋯+n−13n+n3n+1,②①−②得23Tn=13+132+133+⋯+13n−n3n+1=13(1−13n)1−13−n3n+1=12(1−13n)−n3n+1,所以Tn=34(1−13n)−n2⋅3n,所以Tn−Sn2=34(1−13n)−n2⋅3n−34(1−13n)=−n2⋅3n<0,所以Tn 0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为{an}也是等差数列,所以(a+b)2=a(2a−a+2b),解得b=0; 所以an=a2(2n−1),所以a2=3a1.选①③作条件证明②:因为a2=3a1,{an}是等差数列,所以公差d=a2−a1=2a1,所以Sn=na1+n(n−1)2d=n2a1,即Sn=a1n,因为Sn+1−Sn=a1(n+1)−a1n=a1,所以{Sn}是等差数列.选②③作条件证明①:设Sn=an+b(a>0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为a2=3a1,所以a(3a+2b)=3(a+b)2,解得b=0或b=−4a3;当b=0时,a1=a2,an=a2(2n−1),当n≥2时,an-an-1=2a2满足等差数列的定义,此时{an}为等差数列;当b=−4a3时,Sn=an+b=an−43a,S1=−a3<0不合题意,舍去.综上可知{an}为等差数列.8.【答案】(1)由已知2Sn+1bn=2,则bnbn-1=Sn(n≥2)⇒2bn−1bn+1bn=2⇒2bn-1+2=2bn⇒bn-bn-1=12(n≥2),b1=32故{bn}是以32为首项,12为公差的等差数列。(2)由(1)知bn=32+(n-1)12=n+22,则2Sn+2n+2=2⇒Sn=n+2n+1n=1时,a1=S1=32n≥2时,an=Sn-Sn-1=n+2n+1-n+1n=−1n(n+1)故an=32,n=1−1n(n+1),n≥29.【答案】(1)因为{an}是公差为2的等差数列,其前8项和为64.所以a1+a2+⋅⋅⋅+a8=8a1+8×72×2=64,所以a1=1,所以an=a1+2(n−1)=2n−1,n∈N∗; 设等比数列{bn}的公比为q,(q>0),所以b3−b2=b1q2−b1q=4(q2−q)=48,解得q=4(负值舍去),所以bn=b1qn−1=4n,n∈N∗;(2)(i)由题意,cn=b2n+1bn=42n+14n,所以cn2−c2n=(42n+14n)2−(44n+142n)=2⋅4n,所以cn2−c2n≠0,且cn+12−c2n+2cn2−c2n=2⋅4n+12⋅4n=4,所以数列{cn2−c2n}是等比数列;(ii)由题意知,anan+1cn2−c2n=(2n−1)(2n+1)2⋅4n=4n2−12⋅22n<4n22⋅22n,所以anan+1cn2−c2n<4n22⋅22n=2n2⋅2n=12⋅n2n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1,设Tn=k=1nk2k−1=120+221+322+⋅⋅⋅+n2n−1,则12Tn=121+222+323+⋅⋅⋅+n2n,两式相减得12Tn=1+12+122+⋅⋅⋅+12n−1−n2n=1⋅(1−12n)1−12−n2n=2−n+22n,所以Tn=4−n+22n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1=12(4−n+22n−1)<22.10.【答案】(1)2n为偶数,则a2n+1=a2n+2,a2n+2=a2n+1+1,∴ a2n+2=a2n+3,即bn+1=bn+3,且b1=a2=a1+1=2,∴{bn}是以2为首项,3为公差的等差数列,∴b1=2,b2=5,bn=3n−1.(2)当n为奇数时,an=an+1−1,∴{an}的前20项和为a1+a2+⋯+a20=(a1+a3+⋯+a19)+(a2+a4+⋯+a20)=[(a2−1)+(a4−1)+⋯+(a20−1)]+(a2+a4+⋯+a20)=2(a2+a4+⋯+a20)−10. 由(1)可知,a2+a4+⋯+a20=b1+b2+⋯+b10=2×10+10×92×3=155.∴{an}的前20项和为2×155−10=300.11.【答案】(1)解:由题意可得a2=3a1−4=9−4=5,a3=3a2−8=15−8=7,由数列{an}的前三项可猜想数列{an}是以3为首项,2为公差的等差数列,即an=2n+1,证明如下:当n=1时,a1=3成立;假设n=k时,ak=2k+1成立.那么n=k+1时,ak+1=3ak−4k=3(2k+1)−4k=2k+3=2(k+1)+1也成立.则对任意的n∈N*,都有an=2n+1成立(2)解:由(1)可知,an⋅2n=(2n+1)⋅2nSn=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2Sn=3×22+5×23+7×24+⋯+(2n−1)⋅2n+(2n+1)⋅2n+1,②由①−②得:−Sn=6+2×(22+23+⋯+2n)−(2n+1)⋅2n+1=6+2×22×(1−2n−1)1−2−(2n+1)⋅2n+1=(1−2n)⋅2n+1−2,即Sn=(2n−1)⋅2n+1+2.12.【答案】(1)解:设{an}的公比为q,a1为a2,a3的等差中项,∵2a1=a2+a3,a1≠0,∴q2+q−2=0,∵q≠1,∴q=−2;(2)解:设{nan}的前n项和为Sn,a1=1,an=(−2)n−1,Sn=1×1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,①−2Sn=1×(−2)+2×(−2)2+3×(−2)3+⋯(n−1)(−2)n−1+n(−2)n,②①−②得,3Sn=1+(−2)+(−2)2+⋯+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(1+3n)(−2)n3,∴Sn=1−(1+3n)(−2)n9.13.【答案】(1)解:设等比数列{an}的公比为q(q>1),则a2+a4=a1q+a1q3=20a3=a1q2=8,整理可得:2q2−5q+2=0,∵q>1,q=2,a1=2,数列的通项公式为:an=2⋅2n−1=2n. (2)解:由于:(−1)n−1anan+1=(−1)n−1×2n×2n+1=(−1)n−122n+1,故:a1a2−a2a3+…+(−1)n−1anan+1=23−25+27−29+…+(−1)n−1⋅22n+1=23[1−(−22)n]1−(−22)=85−(−1)n22n+35.14.【答案】(1)解:由于数列{an}是公比大于1的等比数列,设首项为a1,公比为q,依题意有a1q+a1q3=20a1q2=8,解得解得a1=2,q=2,或a1=32,q=12(舍),所以an=2n,所以数列{an}的通项公式为an=2n.(2)解:由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b1对应的区间为:(0,1],则b1=0;b2,b3对应的区间分别为:(0,2],(0,3],则b2=b3=1,即有2个1;b4,b5,b6,b7对应的区间分别为:(0,4],(0,5],(0,6],(0,7],则b4=b5=b6=b7=2,即有22个2;b8,b9,⋯,b15对应的区间分别为:(0,8],(0,9],⋯,(0,15],则b8=b9=⋯=b15=3,即有23个3;b16,b17,⋯,b31对应的区间分别为:(0,16],(0,17],⋯,(0,31],则b16=b17=⋯=b31=4,即有24个4;b32,b33,⋯,b63对应的区间分别为:(0,32],(0,33],⋯,(0,63],则b32=b33=⋯=b63=5,即有25个5;b64,b65,⋯,b100对应的区间分别为:(0,64],(0,65],⋯,(0,100],则b64=b65=⋯=b100=6,即有37个6.所以S100=1×2+2×22+3×23+4×24+5×25+6×37=480.15.【答案】解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由a1=1,a5=5(a4−a3),可得d=1.从而{an}的通项公式为an=n.由b1=1,b5=4(b4−b3),又q≠0,可得q2−4q+4=0,解得q=2,从而{bn}的通项公式为bn=2n−1.(Ⅱ)证明:由(Ⅰ)可得Sn=n(n+1)2,故SnSn+2=14n(n+1)(n+2)(n+3),Sn+12=14(n+1)2(n+2)2, 从而SnSn+2−Sn+12=−12(n+1)(n+2)<0,所以SnSn+2 更多>>
简介:数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)一、解答题1.已知{an}为等差数列,{bn}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|bk=am+a1,1≤m≤500}中元素个数.2.记Sn为数列{an}的前n项和.已知2Snn+n=2an+1.(1)证明:{an}是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.3.记Sn为数列{an}的前n项和,已知a1=1,{Snan}是公差为13,的等差数列.(1)求{an}的通项公式;(2)证明:1a1+1a2+⋯+1an<24.记Sn是公差不为0的等差数列{an}的前n项和,若a3=S5,a2a4=S4.(1)求数列{an}的通项公式an;(2)求使Sn>an成立的n的最小值.5.设{an}是首项为1的等比数列,数列{bn}满足bn=nan3,已知a1,3a2,9a3成等差数列.(1)求{an}和{bn}的通项公式;(2)记Sn和Tn分别为{an}和{bn}的前n项和.证明:Tn 0,a2=3a1,且数列{Sn}是等差数列.证明:{an}是等差数列.7.已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列:②数列{Sn}是等差数列;③a2=3a1注:若选择不同的组合分别解答,则按第一个解答计分.8.记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2Sn+1bn=2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式. 9.已知{an}是公差为2的等差数列,其前8项和为64.{bn}是公比大于0的等比数列,b1=4,b3−b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1bn,n∈N*.(i)证明{cn2−c2n}是等比数列;(ii)证明k=1nakak+1ck2−c2k<22(n∈N*)10.已知数列{an}满足a1=1,an+1={an+1,n为奇数an+2,n为偶数(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和11.设数列{an}满足a1=3,an+1=3an−4n.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.12.设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{an}的公比;(2)若a1=1,求数列{nan}的前n项和.13.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)求a1a2−a2a3+…+(−1)n−1anan+1.14.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前100项和S100.15.已知{an}为等差数列,{bn}为等比数列,a1=b1=1,a5=5(a4−a3),b5=4(b4−b3).(Ⅰ)求{an}和{bn}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求证:SnSn+2 0,所以2−2n+1<2,即1a1+1a2+⋯+1an<2.4.【答案】(1)由等差数列的性质可得:S5=5a3,则:a3=5a3,∴a3=0,设等差数列的公差为d,从而有:a2a4=(a3−d)(a3+d)=−d2,S4=a1+a2+a3+a4=(a3−2d)+(a3−d)+a3+(a3−d)=−2d,从而:−d2=−2d,由于公差不为零,故:d=2,数列的通项公式为:an=a3+(n−3)d=2n−6.(2)由数列的通项公式可得:a1=2−6=−4,则:Sn=n×(−4)+n(n−1)2×2=n2−6n, 则不等式Sn>an即:n2−5n>2n−6,整理可得:(n−1)(n−6)>0,解得:n<1或n>6,又n为正整数,故n的最小值为7.5.【答案】(1)因为{an}是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2−6q+1=0,解得q=13,所以an=(13)n−1,所以bn=nan3=n3n.(2)证明:由(1)可得Sn=1×(1−13n)1−13=32(1−13n),Tn=13+232+⋯+n−13n−1+n3n,①13Tn=132+233+⋯+n−13n+n3n+1,②①−②得23Tn=13+132+133+⋯+13n−n3n+1=13(1−13n)1−13−n3n+1=12(1−13n)−n3n+1,所以Tn=34(1−13n)−n2⋅3n,所以Tn−Sn2=34(1−13n)−n2⋅3n−34(1−13n)=−n2⋅3n<0,所以Tn 0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为{an}也是等差数列,所以(a+b)2=a(2a−a+2b),解得b=0; 所以an=a2(2n−1),所以a2=3a1.选①③作条件证明②:因为a2=3a1,{an}是等差数列,所以公差d=a2−a1=2a1,所以Sn=na1+n(n−1)2d=n2a1,即Sn=a1n,因为Sn+1−Sn=a1(n+1)−a1n=a1,所以{Sn}是等差数列.选②③作条件证明①:设Sn=an+b(a>0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为a2=3a1,所以a(3a+2b)=3(a+b)2,解得b=0或b=−4a3;当b=0时,a1=a2,an=a2(2n−1),当n≥2时,an-an-1=2a2满足等差数列的定义,此时{an}为等差数列;当b=−4a3时,Sn=an+b=an−43a,S1=−a3<0不合题意,舍去.综上可知{an}为等差数列.8.【答案】(1)由已知2Sn+1bn=2,则bnbn-1=Sn(n≥2)⇒2bn−1bn+1bn=2⇒2bn-1+2=2bn⇒bn-bn-1=12(n≥2),b1=32故{bn}是以32为首项,12为公差的等差数列。(2)由(1)知bn=32+(n-1)12=n+22,则2Sn+2n+2=2⇒Sn=n+2n+1n=1时,a1=S1=32n≥2时,an=Sn-Sn-1=n+2n+1-n+1n=−1n(n+1)故an=32,n=1−1n(n+1),n≥29.【答案】(1)因为{an}是公差为2的等差数列,其前8项和为64.所以a1+a2+⋅⋅⋅+a8=8a1+8×72×2=64,所以a1=1,所以an=a1+2(n−1)=2n−1,n∈N∗; 设等比数列{bn}的公比为q,(q>0),所以b3−b2=b1q2−b1q=4(q2−q)=48,解得q=4(负值舍去),所以bn=b1qn−1=4n,n∈N∗;(2)(i)由题意,cn=b2n+1bn=42n+14n,所以cn2−c2n=(42n+14n)2−(44n+142n)=2⋅4n,所以cn2−c2n≠0,且cn+12−c2n+2cn2−c2n=2⋅4n+12⋅4n=4,所以数列{cn2−c2n}是等比数列;(ii)由题意知,anan+1cn2−c2n=(2n−1)(2n+1)2⋅4n=4n2−12⋅22n<4n22⋅22n,所以anan+1cn2−c2n<4n22⋅22n=2n2⋅2n=12⋅n2n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1,设Tn=k=1nk2k−1=120+221+322+⋅⋅⋅+n2n−1,则12Tn=121+222+323+⋅⋅⋅+n2n,两式相减得12Tn=1+12+122+⋅⋅⋅+12n−1−n2n=1⋅(1−12n)1−12−n2n=2−n+22n,所以Tn=4−n+22n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1=12(4−n+22n−1)<22.10.【答案】(1)2n为偶数,则a2n+1=a2n+2,a2n+2=a2n+1+1,∴ a2n+2=a2n+3,即bn+1=bn+3,且b1=a2=a1+1=2,∴{bn}是以2为首项,3为公差的等差数列,∴b1=2,b2=5,bn=3n−1.(2)当n为奇数时,an=an+1−1,∴{an}的前20项和为a1+a2+⋯+a20=(a1+a3+⋯+a19)+(a2+a4+⋯+a20)=[(a2−1)+(a4−1)+⋯+(a20−1)]+(a2+a4+⋯+a20)=2(a2+a4+⋯+a20)−10. 由(1)可知,a2+a4+⋯+a20=b1+b2+⋯+b10=2×10+10×92×3=155.∴{an}的前20项和为2×155−10=300.11.【答案】(1)解:由题意可得a2=3a1−4=9−4=5,a3=3a2−8=15−8=7,由数列{an}的前三项可猜想数列{an}是以3为首项,2为公差的等差数列,即an=2n+1,证明如下:当n=1时,a1=3成立;假设n=k时,ak=2k+1成立.那么n=k+1时,ak+1=3ak−4k=3(2k+1)−4k=2k+3=2(k+1)+1也成立.则对任意的n∈N*,都有an=2n+1成立(2)解:由(1)可知,an⋅2n=(2n+1)⋅2nSn=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2Sn=3×22+5×23+7×24+⋯+(2n−1)⋅2n+(2n+1)⋅2n+1,②由①−②得:−Sn=6+2×(22+23+⋯+2n)−(2n+1)⋅2n+1=6+2×22×(1−2n−1)1−2−(2n+1)⋅2n+1=(1−2n)⋅2n+1−2,即Sn=(2n−1)⋅2n+1+2.12.【答案】(1)解:设{an}的公比为q,a1为a2,a3的等差中项,∵2a1=a2+a3,a1≠0,∴q2+q−2=0,∵q≠1,∴q=−2;(2)解:设{nan}的前n项和为Sn,a1=1,an=(−2)n−1,Sn=1×1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,①−2Sn=1×(−2)+2×(−2)2+3×(−2)3+⋯(n−1)(−2)n−1+n(−2)n,②①−②得,3Sn=1+(−2)+(−2)2+⋯+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(1+3n)(−2)n3,∴Sn=1−(1+3n)(−2)n9.13.【答案】(1)解:设等比数列{an}的公比为q(q>1),则a2+a4=a1q+a1q3=20a3=a1q2=8,整理可得:2q2−5q+2=0,∵q>1,q=2,a1=2,数列的通项公式为:an=2⋅2n−1=2n. (2)解:由于:(−1)n−1anan+1=(−1)n−1×2n×2n+1=(−1)n−122n+1,故:a1a2−a2a3+…+(−1)n−1anan+1=23−25+27−29+…+(−1)n−1⋅22n+1=23[1−(−22)n]1−(−22)=85−(−1)n22n+35.14.【答案】(1)解:由于数列{an}是公比大于1的等比数列,设首项为a1,公比为q,依题意有a1q+a1q3=20a1q2=8,解得解得a1=2,q=2,或a1=32,q=12(舍),所以an=2n,所以数列{an}的通项公式为an=2n.(2)解:由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b1对应的区间为:(0,1],则b1=0;b2,b3对应的区间分别为:(0,2],(0,3],则b2=b3=1,即有2个1;b4,b5,b6,b7对应的区间分别为:(0,4],(0,5],(0,6],(0,7],则b4=b5=b6=b7=2,即有22个2;b8,b9,⋯,b15对应的区间分别为:(0,8],(0,9],⋯,(0,15],则b8=b9=⋯=b15=3,即有23个3;b16,b17,⋯,b31对应的区间分别为:(0,16],(0,17],⋯,(0,31],则b16=b17=⋯=b31=4,即有24个4;b32,b33,⋯,b63对应的区间分别为:(0,32],(0,33],⋯,(0,63],则b32=b33=⋯=b63=5,即有25个5;b64,b65,⋯,b100对应的区间分别为:(0,64],(0,65],⋯,(0,100],则b64=b65=⋯=b100=6,即有37个6.所以S100=1×2+2×22+3×23+4×24+5×25+6×37=480.15.【答案】解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由a1=1,a5=5(a4−a3),可得d=1.从而{an}的通项公式为an=n.由b1=1,b5=4(b4−b3),又q≠0,可得q2−4q+4=0,解得q=2,从而{bn}的通项公式为bn=2n−1.(Ⅱ)证明:由(Ⅰ)可得Sn=n(n+1)2,故SnSn+2=14n(n+1)(n+2)(n+3),Sn+12=14(n+1)2(n+2)2, 从而SnSn+2−Sn+12=−12(n+1)(n+2)<0,所以SnSn+2 更多>>
简介:数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)一、解答题1.已知{an}为等差数列,{bn}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|bk=am+a1,1≤m≤500}中元素个数.2.记Sn为数列{an}的前n项和.已知2Snn+n=2an+1.(1)证明:{an}是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.3.记Sn为数列{an}的前n项和,已知a1=1,{Snan}是公差为13,的等差数列.(1)求{an}的通项公式;(2)证明:1a1+1a2+⋯+1an<24.记Sn是公差不为0的等差数列{an}的前n项和,若a3=S5,a2a4=S4.(1)求数列{an}的通项公式an;(2)求使Sn>an成立的n的最小值.5.设{an}是首项为1的等比数列,数列{bn}满足bn=nan3,已知a1,3a2,9a3成等差数列.(1)求{an}和{bn}的通项公式;(2)记Sn和Tn分别为{an}和{bn}的前n项和.证明:Tn 0,a2=3a1,且数列{Sn}是等差数列.证明:{an}是等差数列.7.已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列:②数列{Sn}是等差数列;③a2=3a1注:若选择不同的组合分别解答,则按第一个解答计分.8.记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2Sn+1bn=2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式. 9.已知{an}是公差为2的等差数列,其前8项和为64.{bn}是公比大于0的等比数列,b1=4,b3−b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1bn,n∈N*.(i)证明{cn2−c2n}是等比数列;(ii)证明k=1nakak+1ck2−c2k<22(n∈N*)10.已知数列{an}满足a1=1,an+1={an+1,n为奇数an+2,n为偶数(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和11.设数列{an}满足a1=3,an+1=3an−4n.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.12.设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{an}的公比;(2)若a1=1,求数列{nan}的前n项和.13.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)求a1a2−a2a3+…+(−1)n−1anan+1.14.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前100项和S100.15.已知{an}为等差数列,{bn}为等比数列,a1=b1=1,a5=5(a4−a3),b5=4(b4−b3).(Ⅰ)求{an}和{bn}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求证:SnSn+2 0,所以2−2n+1<2,即1a1+1a2+⋯+1an<2.4.【答案】(1)由等差数列的性质可得:S5=5a3,则:a3=5a3,∴a3=0,设等差数列的公差为d,从而有:a2a4=(a3−d)(a3+d)=−d2,S4=a1+a2+a3+a4=(a3−2d)+(a3−d)+a3+(a3−d)=−2d,从而:−d2=−2d,由于公差不为零,故:d=2,数列的通项公式为:an=a3+(n−3)d=2n−6.(2)由数列的通项公式可得:a1=2−6=−4,则:Sn=n×(−4)+n(n−1)2×2=n2−6n, 则不等式Sn>an即:n2−5n>2n−6,整理可得:(n−1)(n−6)>0,解得:n<1或n>6,又n为正整数,故n的最小值为7.5.【答案】(1)因为{an}是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2−6q+1=0,解得q=13,所以an=(13)n−1,所以bn=nan3=n3n.(2)证明:由(1)可得Sn=1×(1−13n)1−13=32(1−13n),Tn=13+232+⋯+n−13n−1+n3n,①13Tn=132+233+⋯+n−13n+n3n+1,②①−②得23Tn=13+132+133+⋯+13n−n3n+1=13(1−13n)1−13−n3n+1=12(1−13n)−n3n+1,所以Tn=34(1−13n)−n2⋅3n,所以Tn−Sn2=34(1−13n)−n2⋅3n−34(1−13n)=−n2⋅3n<0,所以Tn 0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为{an}也是等差数列,所以(a+b)2=a(2a−a+2b),解得b=0; 所以an=a2(2n−1),所以a2=3a1.选①③作条件证明②:因为a2=3a1,{an}是等差数列,所以公差d=a2−a1=2a1,所以Sn=na1+n(n−1)2d=n2a1,即Sn=a1n,因为Sn+1−Sn=a1(n+1)−a1n=a1,所以{Sn}是等差数列.选②③作条件证明①:设Sn=an+b(a>0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为a2=3a1,所以a(3a+2b)=3(a+b)2,解得b=0或b=−4a3;当b=0时,a1=a2,an=a2(2n−1),当n≥2时,an-an-1=2a2满足等差数列的定义,此时{an}为等差数列;当b=−4a3时,Sn=an+b=an−43a,S1=−a3<0不合题意,舍去.综上可知{an}为等差数列.8.【答案】(1)由已知2Sn+1bn=2,则bnbn-1=Sn(n≥2)⇒2bn−1bn+1bn=2⇒2bn-1+2=2bn⇒bn-bn-1=12(n≥2),b1=32故{bn}是以32为首项,12为公差的等差数列。(2)由(1)知bn=32+(n-1)12=n+22,则2Sn+2n+2=2⇒Sn=n+2n+1n=1时,a1=S1=32n≥2时,an=Sn-Sn-1=n+2n+1-n+1n=−1n(n+1)故an=32,n=1−1n(n+1),n≥29.【答案】(1)因为{an}是公差为2的等差数列,其前8项和为64.所以a1+a2+⋅⋅⋅+a8=8a1+8×72×2=64,所以a1=1,所以an=a1+2(n−1)=2n−1,n∈N∗; 设等比数列{bn}的公比为q,(q>0),所以b3−b2=b1q2−b1q=4(q2−q)=48,解得q=4(负值舍去),所以bn=b1qn−1=4n,n∈N∗;(2)(i)由题意,cn=b2n+1bn=42n+14n,所以cn2−c2n=(42n+14n)2−(44n+142n)=2⋅4n,所以cn2−c2n≠0,且cn+12−c2n+2cn2−c2n=2⋅4n+12⋅4n=4,所以数列{cn2−c2n}是等比数列;(ii)由题意知,anan+1cn2−c2n=(2n−1)(2n+1)2⋅4n=4n2−12⋅22n<4n22⋅22n,所以anan+1cn2−c2n<4n22⋅22n=2n2⋅2n=12⋅n2n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1,设Tn=k=1nk2k−1=120+221+322+⋅⋅⋅+n2n−1,则12Tn=121+222+323+⋅⋅⋅+n2n,两式相减得12Tn=1+12+122+⋅⋅⋅+12n−1−n2n=1⋅(1−12n)1−12−n2n=2−n+22n,所以Tn=4−n+22n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1=12(4−n+22n−1)<22.10.【答案】(1)2n为偶数,则a2n+1=a2n+2,a2n+2=a2n+1+1,∴ a2n+2=a2n+3,即bn+1=bn+3,且b1=a2=a1+1=2,∴{bn}是以2为首项,3为公差的等差数列,∴b1=2,b2=5,bn=3n−1.(2)当n为奇数时,an=an+1−1,∴{an}的前20项和为a1+a2+⋯+a20=(a1+a3+⋯+a19)+(a2+a4+⋯+a20)=[(a2−1)+(a4−1)+⋯+(a20−1)]+(a2+a4+⋯+a20)=2(a2+a4+⋯+a20)−10. 由(1)可知,a2+a4+⋯+a20=b1+b2+⋯+b10=2×10+10×92×3=155.∴{an}的前20项和为2×155−10=300.11.【答案】(1)解:由题意可得a2=3a1−4=9−4=5,a3=3a2−8=15−8=7,由数列{an}的前三项可猜想数列{an}是以3为首项,2为公差的等差数列,即an=2n+1,证明如下:当n=1时,a1=3成立;假设n=k时,ak=2k+1成立.那么n=k+1时,ak+1=3ak−4k=3(2k+1)−4k=2k+3=2(k+1)+1也成立.则对任意的n∈N*,都有an=2n+1成立(2)解:由(1)可知,an⋅2n=(2n+1)⋅2nSn=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2Sn=3×22+5×23+7×24+⋯+(2n−1)⋅2n+(2n+1)⋅2n+1,②由①−②得:−Sn=6+2×(22+23+⋯+2n)−(2n+1)⋅2n+1=6+2×22×(1−2n−1)1−2−(2n+1)⋅2n+1=(1−2n)⋅2n+1−2,即Sn=(2n−1)⋅2n+1+2.12.【答案】(1)解:设{an}的公比为q,a1为a2,a3的等差中项,∵2a1=a2+a3,a1≠0,∴q2+q−2=0,∵q≠1,∴q=−2;(2)解:设{nan}的前n项和为Sn,a1=1,an=(−2)n−1,Sn=1×1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,①−2Sn=1×(−2)+2×(−2)2+3×(−2)3+⋯(n−1)(−2)n−1+n(−2)n,②①−②得,3Sn=1+(−2)+(−2)2+⋯+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(1+3n)(−2)n3,∴Sn=1−(1+3n)(−2)n9.13.【答案】(1)解:设等比数列{an}的公比为q(q>1),则a2+a4=a1q+a1q3=20a3=a1q2=8,整理可得:2q2−5q+2=0,∵q>1,q=2,a1=2,数列的通项公式为:an=2⋅2n−1=2n. (2)解:由于:(−1)n−1anan+1=(−1)n−1×2n×2n+1=(−1)n−122n+1,故:a1a2−a2a3+…+(−1)n−1anan+1=23−25+27−29+…+(−1)n−1⋅22n+1=23[1−(−22)n]1−(−22)=85−(−1)n22n+35.14.【答案】(1)解:由于数列{an}是公比大于1的等比数列,设首项为a1,公比为q,依题意有a1q+a1q3=20a1q2=8,解得解得a1=2,q=2,或a1=32,q=12(舍),所以an=2n,所以数列{an}的通项公式为an=2n.(2)解:由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b1对应的区间为:(0,1],则b1=0;b2,b3对应的区间分别为:(0,2],(0,3],则b2=b3=1,即有2个1;b4,b5,b6,b7对应的区间分别为:(0,4],(0,5],(0,6],(0,7],则b4=b5=b6=b7=2,即有22个2;b8,b9,⋯,b15对应的区间分别为:(0,8],(0,9],⋯,(0,15],则b8=b9=⋯=b15=3,即有23个3;b16,b17,⋯,b31对应的区间分别为:(0,16],(0,17],⋯,(0,31],则b16=b17=⋯=b31=4,即有24个4;b32,b33,⋯,b63对应的区间分别为:(0,32],(0,33],⋯,(0,63],则b32=b33=⋯=b63=5,即有25个5;b64,b65,⋯,b100对应的区间分别为:(0,64],(0,65],⋯,(0,100],则b64=b65=⋯=b100=6,即有37个6.所以S100=1×2+2×22+3×23+4×24+5×25+6×37=480.15.【答案】解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由a1=1,a5=5(a4−a3),可得d=1.从而{an}的通项公式为an=n.由b1=1,b5=4(b4−b3),又q≠0,可得q2−4q+4=0,解得q=2,从而{bn}的通项公式为bn=2n−1.(Ⅱ)证明:由(Ⅰ)可得Sn=n(n+1)2,故SnSn+2=14n(n+1)(n+2)(n+3),Sn+12=14(n+1)2(n+2)2, 从而SnSn+2−Sn+12=−12(n+1)(n+2)<0,所以SnSn+2 更多>>
简介:数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)一、解答题1.已知{an}为等差数列,{bn}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|bk=am+a1,1≤m≤500}中元素个数.2.记Sn为数列{an}的前n项和.已知2Snn+n=2an+1.(1)证明:{an}是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.3.记Sn为数列{an}的前n项和,已知a1=1,{Snan}是公差为13,的等差数列.(1)求{an}的通项公式;(2)证明:1a1+1a2+⋯+1an<24.记Sn是公差不为0的等差数列{an}的前n项和,若a3=S5,a2a4=S4.(1)求数列{an}的通项公式an;(2)求使Sn>an成立的n的最小值.5.设{an}是首项为1的等比数列,数列{bn}满足bn=nan3,已知a1,3a2,9a3成等差数列.(1)求{an}和{bn}的通项公式;(2)记Sn和Tn分别为{an}和{bn}的前n项和.证明:Tn 0,a2=3a1,且数列{Sn}是等差数列.证明:{an}是等差数列.7.已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列:②数列{Sn}是等差数列;③a2=3a1注:若选择不同的组合分别解答,则按第一个解答计分.8.记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2Sn+1bn=2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式. 9.已知{an}是公差为2的等差数列,其前8项和为64.{bn}是公比大于0的等比数列,b1=4,b3−b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1bn,n∈N*.(i)证明{cn2−c2n}是等比数列;(ii)证明k=1nakak+1ck2−c2k<22(n∈N*)10.已知数列{an}满足a1=1,an+1={an+1,n为奇数an+2,n为偶数(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和11.设数列{an}满足a1=3,an+1=3an−4n.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.12.设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{an}的公比;(2)若a1=1,求数列{nan}的前n项和.13.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)求a1a2−a2a3+…+(−1)n−1anan+1.14.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前100项和S100.15.已知{an}为等差数列,{bn}为等比数列,a1=b1=1,a5=5(a4−a3),b5=4(b4−b3).(Ⅰ)求{an}和{bn}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求证:SnSn+2 0,所以2−2n+1<2,即1a1+1a2+⋯+1an<2.4.【答案】(1)由等差数列的性质可得:S5=5a3,则:a3=5a3,∴a3=0,设等差数列的公差为d,从而有:a2a4=(a3−d)(a3+d)=−d2,S4=a1+a2+a3+a4=(a3−2d)+(a3−d)+a3+(a3−d)=−2d,从而:−d2=−2d,由于公差不为零,故:d=2,数列的通项公式为:an=a3+(n−3)d=2n−6.(2)由数列的通项公式可得:a1=2−6=−4,则:Sn=n×(−4)+n(n−1)2×2=n2−6n, 则不等式Sn>an即:n2−5n>2n−6,整理可得:(n−1)(n−6)>0,解得:n<1或n>6,又n为正整数,故n的最小值为7.5.【答案】(1)因为{an}是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2−6q+1=0,解得q=13,所以an=(13)n−1,所以bn=nan3=n3n.(2)证明:由(1)可得Sn=1×(1−13n)1−13=32(1−13n),Tn=13+232+⋯+n−13n−1+n3n,①13Tn=132+233+⋯+n−13n+n3n+1,②①−②得23Tn=13+132+133+⋯+13n−n3n+1=13(1−13n)1−13−n3n+1=12(1−13n)−n3n+1,所以Tn=34(1−13n)−n2⋅3n,所以Tn−Sn2=34(1−13n)−n2⋅3n−34(1−13n)=−n2⋅3n<0,所以Tn 0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为{an}也是等差数列,所以(a+b)2=a(2a−a+2b),解得b=0; 所以an=a2(2n−1),所以a2=3a1.选①③作条件证明②:因为a2=3a1,{an}是等差数列,所以公差d=a2−a1=2a1,所以Sn=na1+n(n−1)2d=n2a1,即Sn=a1n,因为Sn+1−Sn=a1(n+1)−a1n=a1,所以{Sn}是等差数列.选②③作条件证明①:设Sn=an+b(a>0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为a2=3a1,所以a(3a+2b)=3(a+b)2,解得b=0或b=−4a3;当b=0时,a1=a2,an=a2(2n−1),当n≥2时,an-an-1=2a2满足等差数列的定义,此时{an}为等差数列;当b=−4a3时,Sn=an+b=an−43a,S1=−a3<0不合题意,舍去.综上可知{an}为等差数列.8.【答案】(1)由已知2Sn+1bn=2,则bnbn-1=Sn(n≥2)⇒2bn−1bn+1bn=2⇒2bn-1+2=2bn⇒bn-bn-1=12(n≥2),b1=32故{bn}是以32为首项,12为公差的等差数列。(2)由(1)知bn=32+(n-1)12=n+22,则2Sn+2n+2=2⇒Sn=n+2n+1n=1时,a1=S1=32n≥2时,an=Sn-Sn-1=n+2n+1-n+1n=−1n(n+1)故an=32,n=1−1n(n+1),n≥29.【答案】(1)因为{an}是公差为2的等差数列,其前8项和为64.所以a1+a2+⋅⋅⋅+a8=8a1+8×72×2=64,所以a1=1,所以an=a1+2(n−1)=2n−1,n∈N∗; 设等比数列{bn}的公比为q,(q>0),所以b3−b2=b1q2−b1q=4(q2−q)=48,解得q=4(负值舍去),所以bn=b1qn−1=4n,n∈N∗;(2)(i)由题意,cn=b2n+1bn=42n+14n,所以cn2−c2n=(42n+14n)2−(44n+142n)=2⋅4n,所以cn2−c2n≠0,且cn+12−c2n+2cn2−c2n=2⋅4n+12⋅4n=4,所以数列{cn2−c2n}是等比数列;(ii)由题意知,anan+1cn2−c2n=(2n−1)(2n+1)2⋅4n=4n2−12⋅22n<4n22⋅22n,所以anan+1cn2−c2n<4n22⋅22n=2n2⋅2n=12⋅n2n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1,设Tn=k=1nk2k−1=120+221+322+⋅⋅⋅+n2n−1,则12Tn=121+222+323+⋅⋅⋅+n2n,两式相减得12Tn=1+12+122+⋅⋅⋅+12n−1−n2n=1⋅(1−12n)1−12−n2n=2−n+22n,所以Tn=4−n+22n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1=12(4−n+22n−1)<22.10.【答案】(1)2n为偶数,则a2n+1=a2n+2,a2n+2=a2n+1+1,∴ a2n+2=a2n+3,即bn+1=bn+3,且b1=a2=a1+1=2,∴{bn}是以2为首项,3为公差的等差数列,∴b1=2,b2=5,bn=3n−1.(2)当n为奇数时,an=an+1−1,∴{an}的前20项和为a1+a2+⋯+a20=(a1+a3+⋯+a19)+(a2+a4+⋯+a20)=[(a2−1)+(a4−1)+⋯+(a20−1)]+(a2+a4+⋯+a20)=2(a2+a4+⋯+a20)−10. 由(1)可知,a2+a4+⋯+a20=b1+b2+⋯+b10=2×10+10×92×3=155.∴{an}的前20项和为2×155−10=300.11.【答案】(1)解:由题意可得a2=3a1−4=9−4=5,a3=3a2−8=15−8=7,由数列{an}的前三项可猜想数列{an}是以3为首项,2为公差的等差数列,即an=2n+1,证明如下:当n=1时,a1=3成立;假设n=k时,ak=2k+1成立.那么n=k+1时,ak+1=3ak−4k=3(2k+1)−4k=2k+3=2(k+1)+1也成立.则对任意的n∈N*,都有an=2n+1成立(2)解:由(1)可知,an⋅2n=(2n+1)⋅2nSn=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2Sn=3×22+5×23+7×24+⋯+(2n−1)⋅2n+(2n+1)⋅2n+1,②由①−②得:−Sn=6+2×(22+23+⋯+2n)−(2n+1)⋅2n+1=6+2×22×(1−2n−1)1−2−(2n+1)⋅2n+1=(1−2n)⋅2n+1−2,即Sn=(2n−1)⋅2n+1+2.12.【答案】(1)解:设{an}的公比为q,a1为a2,a3的等差中项,∵2a1=a2+a3,a1≠0,∴q2+q−2=0,∵q≠1,∴q=−2;(2)解:设{nan}的前n项和为Sn,a1=1,an=(−2)n−1,Sn=1×1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,①−2Sn=1×(−2)+2×(−2)2+3×(−2)3+⋯(n−1)(−2)n−1+n(−2)n,②①−②得,3Sn=1+(−2)+(−2)2+⋯+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(1+3n)(−2)n3,∴Sn=1−(1+3n)(−2)n9.13.【答案】(1)解:设等比数列{an}的公比为q(q>1),则a2+a4=a1q+a1q3=20a3=a1q2=8,整理可得:2q2−5q+2=0,∵q>1,q=2,a1=2,数列的通项公式为:an=2⋅2n−1=2n. (2)解:由于:(−1)n−1anan+1=(−1)n−1×2n×2n+1=(−1)n−122n+1,故:a1a2−a2a3+…+(−1)n−1anan+1=23−25+27−29+…+(−1)n−1⋅22n+1=23[1−(−22)n]1−(−22)=85−(−1)n22n+35.14.【答案】(1)解:由于数列{an}是公比大于1的等比数列,设首项为a1,公比为q,依题意有a1q+a1q3=20a1q2=8,解得解得a1=2,q=2,或a1=32,q=12(舍),所以an=2n,所以数列{an}的通项公式为an=2n.(2)解:由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b1对应的区间为:(0,1],则b1=0;b2,b3对应的区间分别为:(0,2],(0,3],则b2=b3=1,即有2个1;b4,b5,b6,b7对应的区间分别为:(0,4],(0,5],(0,6],(0,7],则b4=b5=b6=b7=2,即有22个2;b8,b9,⋯,b15对应的区间分别为:(0,8],(0,9],⋯,(0,15],则b8=b9=⋯=b15=3,即有23个3;b16,b17,⋯,b31对应的区间分别为:(0,16],(0,17],⋯,(0,31],则b16=b17=⋯=b31=4,即有24个4;b32,b33,⋯,b63对应的区间分别为:(0,32],(0,33],⋯,(0,63],则b32=b33=⋯=b63=5,即有25个5;b64,b65,⋯,b100对应的区间分别为:(0,64],(0,65],⋯,(0,100],则b64=b65=⋯=b100=6,即有37个6.所以S100=1×2+2×22+3×23+4×24+5×25+6×37=480.15.【答案】解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由a1=1,a5=5(a4−a3),可得d=1.从而{an}的通项公式为an=n.由b1=1,b5=4(b4−b3),又q≠0,可得q2−4q+4=0,解得q=2,从而{bn}的通项公式为bn=2n−1.(Ⅱ)证明:由(Ⅰ)可得Sn=n(n+1)2,故SnSn+2=14n(n+1)(n+2)(n+3),Sn+12=14(n+1)2(n+2)2, 从而SnSn+2−Sn+12=−12(n+1)(n+2)<0,所以SnSn+2 更多>>
简介:数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)一、解答题1.已知{an}为等差数列,{bn}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|bk=am+a1,1≤m≤500}中元素个数.2.记Sn为数列{an}的前n项和.已知2Snn+n=2an+1.(1)证明:{an}是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.3.记Sn为数列{an}的前n项和,已知a1=1,{Snan}是公差为13,的等差数列.(1)求{an}的通项公式;(2)证明:1a1+1a2+⋯+1an<24.记Sn是公差不为0的等差数列{an}的前n项和,若a3=S5,a2a4=S4.(1)求数列{an}的通项公式an;(2)求使Sn>an成立的n的最小值.5.设{an}是首项为1的等比数列,数列{bn}满足bn=nan3,已知a1,3a2,9a3成等差数列.(1)求{an}和{bn}的通项公式;(2)记Sn和Tn分别为{an}和{bn}的前n项和.证明:Tn 0,a2=3a1,且数列{Sn}是等差数列.证明:{an}是等差数列.7.已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列:②数列{Sn}是等差数列;③a2=3a1注:若选择不同的组合分别解答,则按第一个解答计分.8.记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2Sn+1bn=2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式. 9.已知{an}是公差为2的等差数列,其前8项和为64.{bn}是公比大于0的等比数列,b1=4,b3−b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1bn,n∈N*.(i)证明{cn2−c2n}是等比数列;(ii)证明k=1nakak+1ck2−c2k<22(n∈N*)10.已知数列{an}满足a1=1,an+1={an+1,n为奇数an+2,n为偶数(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和11.设数列{an}满足a1=3,an+1=3an−4n.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.12.设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{an}的公比;(2)若a1=1,求数列{nan}的前n项和.13.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)求a1a2−a2a3+…+(−1)n−1anan+1.14.已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.(1)求{an}的通项公式;(2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前100项和S100.15.已知{an}为等差数列,{bn}为等比数列,a1=b1=1,a5=5(a4−a3),b5=4(b4−b3).(Ⅰ)求{an}和{bn}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求证:SnSn+2 0,所以2−2n+1<2,即1a1+1a2+⋯+1an<2.4.【答案】(1)由等差数列的性质可得:S5=5a3,则:a3=5a3,∴a3=0,设等差数列的公差为d,从而有:a2a4=(a3−d)(a3+d)=−d2,S4=a1+a2+a3+a4=(a3−2d)+(a3−d)+a3+(a3−d)=−2d,从而:−d2=−2d,由于公差不为零,故:d=2,数列的通项公式为:an=a3+(n−3)d=2n−6.(2)由数列的通项公式可得:a1=2−6=−4,则:Sn=n×(−4)+n(n−1)2×2=n2−6n, 则不等式Sn>an即:n2−5n>2n−6,整理可得:(n−1)(n−6)>0,解得:n<1或n>6,又n为正整数,故n的最小值为7.5.【答案】(1)因为{an}是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2−6q+1=0,解得q=13,所以an=(13)n−1,所以bn=nan3=n3n.(2)证明:由(1)可得Sn=1×(1−13n)1−13=32(1−13n),Tn=13+232+⋯+n−13n−1+n3n,①13Tn=132+233+⋯+n−13n+n3n+1,②①−②得23Tn=13+132+133+⋯+13n−n3n+1=13(1−13n)1−13−n3n+1=12(1−13n)−n3n+1,所以Tn=34(1−13n)−n2⋅3n,所以Tn−Sn2=34(1−13n)−n2⋅3n−34(1−13n)=−n2⋅3n<0,所以Tn 0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为{an}也是等差数列,所以(a+b)2=a(2a−a+2b),解得b=0; 所以an=a2(2n−1),所以a2=3a1.选①③作条件证明②:因为a2=3a1,{an}是等差数列,所以公差d=a2−a1=2a1,所以Sn=na1+n(n−1)2d=n2a1,即Sn=a1n,因为Sn+1−Sn=a1(n+1)−a1n=a1,所以{Sn}是等差数列.选②③作条件证明①:设Sn=an+b(a>0),则Sn=(an+b)2,当n=1时,a1=S1=(a+b)2;当n≥2时,an=Sn−Sn−1=(an+b)2−(an−a+b)2=a(2an−a+2b);因为a2=3a1,所以a(3a+2b)=3(a+b)2,解得b=0或b=−4a3;当b=0时,a1=a2,an=a2(2n−1),当n≥2时,an-an-1=2a2满足等差数列的定义,此时{an}为等差数列;当b=−4a3时,Sn=an+b=an−43a,S1=−a3<0不合题意,舍去.综上可知{an}为等差数列.8.【答案】(1)由已知2Sn+1bn=2,则bnbn-1=Sn(n≥2)⇒2bn−1bn+1bn=2⇒2bn-1+2=2bn⇒bn-bn-1=12(n≥2),b1=32故{bn}是以32为首项,12为公差的等差数列。(2)由(1)知bn=32+(n-1)12=n+22,则2Sn+2n+2=2⇒Sn=n+2n+1n=1时,a1=S1=32n≥2时,an=Sn-Sn-1=n+2n+1-n+1n=−1n(n+1)故an=32,n=1−1n(n+1),n≥29.【答案】(1)因为{an}是公差为2的等差数列,其前8项和为64.所以a1+a2+⋅⋅⋅+a8=8a1+8×72×2=64,所以a1=1,所以an=a1+2(n−1)=2n−1,n∈N∗; 设等比数列{bn}的公比为q,(q>0),所以b3−b2=b1q2−b1q=4(q2−q)=48,解得q=4(负值舍去),所以bn=b1qn−1=4n,n∈N∗;(2)(i)由题意,cn=b2n+1bn=42n+14n,所以cn2−c2n=(42n+14n)2−(44n+142n)=2⋅4n,所以cn2−c2n≠0,且cn+12−c2n+2cn2−c2n=2⋅4n+12⋅4n=4,所以数列{cn2−c2n}是等比数列;(ii)由题意知,anan+1cn2−c2n=(2n−1)(2n+1)2⋅4n=4n2−12⋅22n<4n22⋅22n,所以anan+1cn2−c2n<4n22⋅22n=2n2⋅2n=12⋅n2n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1,设Tn=k=1nk2k−1=120+221+322+⋅⋅⋅+n2n−1,则12Tn=121+222+323+⋅⋅⋅+n2n,两式相减得12Tn=1+12+122+⋅⋅⋅+12n−1−n2n=1⋅(1−12n)1−12−n2n=2−n+22n,所以Tn=4−n+22n−1,所以k=1nakak+1ck2−c2k<12k=1nk2k−1=12(4−n+22n−1)<22.10.【答案】(1)2n为偶数,则a2n+1=a2n+2,a2n+2=a2n+1+1,∴ a2n+2=a2n+3,即bn+1=bn+3,且b1=a2=a1+1=2,∴{bn}是以2为首项,3为公差的等差数列,∴b1=2,b2=5,bn=3n−1.(2)当n为奇数时,an=an+1−1,∴{an}的前20项和为a1+a2+⋯+a20=(a1+a3+⋯+a19)+(a2+a4+⋯+a20)=[(a2−1)+(a4−1)+⋯+(a20−1)]+(a2+a4+⋯+a20)=2(a2+a4+⋯+a20)−10. 由(1)可知,a2+a4+⋯+a20=b1+b2+⋯+b10=2×10+10×92×3=155.∴{an}的前20项和为2×155−10=300.11.【答案】(1)解:由题意可得a2=3a1−4=9−4=5,a3=3a2−8=15−8=7,由数列{an}的前三项可猜想数列{an}是以3为首项,2为公差的等差数列,即an=2n+1,证明如下:当n=1时,a1=3成立;假设n=k时,ak=2k+1成立.那么n=k+1时,ak+1=3ak−4k=3(2k+1)−4k=2k+3=2(k+1)+1也成立.则对任意的n∈N*,都有an=2n+1成立(2)解:由(1)可知,an⋅2n=(2n+1)⋅2nSn=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2Sn=3×22+5×23+7×24+⋯+(2n−1)⋅2n+(2n+1)⋅2n+1,②由①−②得:−Sn=6+2×(22+23+⋯+2n)−(2n+1)⋅2n+1=6+2×22×(1−2n−1)1−2−(2n+1)⋅2n+1=(1−2n)⋅2n+1−2,即Sn=(2n−1)⋅2n+1+2.12.【答案】(1)解:设{an}的公比为q,a1为a2,a3的等差中项,∵2a1=a2+a3,a1≠0,∴q2+q−2=0,∵q≠1,∴q=−2;(2)解:设{nan}的前n项和为Sn,a1=1,an=(−2)n−1,Sn=1×1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,①−2Sn=1×(−2)+2×(−2)2+3×(−2)3+⋯(n−1)(−2)n−1+n(−2)n,②①−②得,3Sn=1+(−2)+(−2)2+⋯+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(1+3n)(−2)n3,∴Sn=1−(1+3n)(−2)n9.13.【答案】(1)解:设等比数列{an}的公比为q(q>1),则a2+a4=a1q+a1q3=20a3=a1q2=8,整理可得:2q2−5q+2=0,∵q>1,q=2,a1=2,数列的通项公式为:an=2⋅2n−1=2n. (2)解:由于:(−1)n−1anan+1=(−1)n−1×2n×2n+1=(−1)n−122n+1,故:a1a2−a2a3+…+(−1)n−1anan+1=23−25+27−29+…+(−1)n−1⋅22n+1=23[1−(−22)n]1−(−22)=85−(−1)n22n+35.14.【答案】(1)解:由于数列{an}是公比大于1的等比数列,设首项为a1,公比为q,依题意有a1q+a1q3=20a1q2=8,解得解得a1=2,q=2,或a1=32,q=12(舍),所以an=2n,所以数列{an}的通项公式为an=2n.(2)解:由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b1对应的区间为:(0,1],则b1=0;b2,b3对应的区间分别为:(0,2],(0,3],则b2=b3=1,即有2个1;b4,b5,b6,b7对应的区间分别为:(0,4],(0,5],(0,6],(0,7],则b4=b5=b6=b7=2,即有22个2;b8,b9,⋯,b15对应的区间分别为:(0,8],(0,9],⋯,(0,15],则b8=b9=⋯=b15=3,即有23个3;b16,b17,⋯,b31对应的区间分别为:(0,16],(0,17],⋯,(0,31],则b16=b17=⋯=b31=4,即有24个4;b32,b33,⋯,b63对应的区间分别为:(0,32],(0,33],⋯,(0,63],则b32=b33=⋯=b63=5,即有25个5;b64,b65,⋯,b100对应的区间分别为:(0,64],(0,65],⋯,(0,100],则b64=b65=⋯=b100=6,即有37个6.所以S100=1×2+2×22+3×23+4×24+5×25+6×37=480.15.【答案】解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由a1=1,a5=5(a4−a3),可得d=1.从而{an}的通项公式为an=n.由b1=1,b5=4(b4−b3),又q≠0,可得q2−4q+4=0,解得q=2,从而{bn}的通项公式为bn=2n−1.(Ⅱ)证明:由(Ⅰ)可得Sn=n(n+1)2,故SnSn+2=14n(n+1)(n+2)(n+3),Sn+12=14(n+1)2(n+2)2, 从而SnSn+2−Sn+12=−12(n+1)(n+2)<0,所以SnSn+2 更多>>