九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1配方法导学案2(新人教版)
九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1配方法导学案2(新人教版),配方法,莲山课件.
21.2 解一元二次方程
21.2.1 配方法(1)
1. 使学生会用直接开平方法解一元二次方程.
2. 渗透转化思想,掌握一些转化的技能.
重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次——转化的数学思想.
难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、自学指导.(10分钟)
问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?
设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:
__10×6×2=1500__,
由此可得__x2=25__,
根据平方根的意义,得x=__±5__,
即x1=__5__,x2=__-5__.
可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.
探究:对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?
方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x-1=±5__,即将方程变为__2x-1=5和__2x-1=-5__两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=__1+52,x2=__1-52__.
在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.
方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到 __x+3=±2__ ,方程的根为x1= __-1__,x2=__-5__.
归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p.
二、自学检测:学生自主完成,
九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.2公式法导学案(新人教版)
九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.2公式法导学案(新人教版),公式法,莲山课件.
小组内展示,点评,教师巡视.(6分钟)
解下列方程:
(1)2y2=8; (2)2(x-8)2=50;
(3)(2x-1)2+4=0; (4)4×2-4x+1=0.
解:(1)2y2=8, (2)2(x-8)2=50,
y2=4, (x-8)2=25,
y=±2, x-8=±5,
∴y1=2,y2=-2; x-8=5或x-8=-5,
∴x1=13,x2=3;
(3)(2x-1)2+4=0, (4)4×2-4x+1=0,
(2x-1)2=-4<0> ∴原方程无解; 2x-1=0,
∴x1=x2=12.
点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)
1.用直接开平方法解下列方程:
(1)(3x+1)2=7; (2)y2+2y+1=24;
(3)9n2-24n+16=11.
解:(1)-1±73;(2)-1±26;(3)4±113.
点拨精讲:运用开平方法解形如(mx+n)2=p(p≥0)的方程时,最容易出错的是漏掉负根.
2.已知关于x的方程x2+(a2+1)x-3=0的一个根是1,求a的值.
解:±1.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)
用直接开平方法解下列方程:
(1)3(x-1)2-6=0 ; (2)x2-4x+4=5;
(3)9×2+6x+1=4; (4)36×2-1=0;
(5)4×2=81; (6)(x+5)2=25;
(7)x2+2x+1=4.
解:(1)x1=1+2,x2=1-2;
(2)x1=2+5,x2=2-5;
(3)x1=-1,x2=13;
(4)x1=16,x2=-16;
(5)x1=92,x2=-92;
(6)x1=0,x2=-10;
(7)x1=1,x2=-3.
学生总结本堂课的收获与困惑.(2分钟)
1.用直接开平方法解一元二次方程.
2.理解“降次”思想.
3.理解x2=p(p≥0)或(mx+n)2=p(p≥0)中,为什么p≥0?
学习至此,请使用本课时对应训练部分.(10分钟)
九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.3因式分解法导学案(新人教版)
九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.3因式分解法导学案(新人教版),因式分解法,莲山课件.