北师大版初中数学八年级上册5.3 应用二元一次方程组——鸡兔同笼优秀教案word
北师大版初中数学八年级上册5.3 应用二元一次方程组——鸡兔同笼优秀教案word,北师大版,八上数学,教案,莲山课件.
第2课时 加减法
1.会用加减法解二元一次方程组.(重点)
一、情境导入
上节课我们学习了用代入消元法解二元一次方程组,那么如何解方程组2x-3y=5②(2x+3y=-1,①)呢?
1.用代入法解(消x)方程组.
2.解完后思考:
用“整体代换”的思想把2x作为一个整体代入消元求解.
3.还有没有更简单的解法?
由x的系数相等,是否可以考虑①-②,从而消去x求解?
4.思考:
(1)两方程相减的依据是什么?
(2)目的是什么?
(3)相减时要特别注意什么?
二、合作探究
探究点一:用加减消元法解二元一次方程组
用加减消元法解下列方程组:
(1)3x-2y=15;②(4x+3y=3,①)
(2)-1.②(4x+9)
解析:(1)观察x,y的两组系数,x的系数的最小公倍数是12,y的系数的最小公倍数是6,所以选择消去y,把方程①的两边同乘以2,得8x+6y=6③,把方程②的两边同乘以3,得9x-6y=45④,把③与④相加就可以消去y;(2)先化简方程组,得4x-5y=6.④(2x+3y=14,③)观察其系数,方程④中x的系数恰好是方程③中x的系数的2倍,所以应选择消去x,把方程③两边都乘以2,得4x+6y=28⑤,再把方程⑤与方程④相减,就可以消去x.
解:(1)①×2,得8x+6y=6.③
②×3,得9x-6y=45.④
③+④,得17x=51,x=3.把x=3代入①,得4×3+3y=3,y=-3.
所以原方程组的解是y=-3.(x=3,)
(2)先化简方程组,得4x-5y=6.④(2x+3y=14,③)
③×2,得4x+6y=28.⑤
北师大版初中数学八年级上册5.4 应用二元一次方程组——增收节支优秀教案word
北师大版初中数学八年级上册5.4 应用二元一次方程组——增收节支优秀教案word,北师大版,八上数学,教案,莲山课件.
⑤-④,得11y=22,y=2.
把y=2代入④,得4x-5×2=6,x=4.
所以原方程组的解是y=2.(x=4,)
方法总结:用加减消元法解二元一次方程组时,决定消去哪个未知数很重要,一般选择消去两个方程中系数的最小公倍数的绝对值较小的未知数;复杂的方程组一定要先化简,再观察思考消元方案.
探究点二:用加减法整体代入求值
已知x、y满足方程组3x+y=-1,(x+3y=5,)求代数式x-y的值.
解析:观察两个方程的系数,可知两方程相减得2x-2y=-6,从而求出x-y的值.
解:3x+y=-1,②(x+3y=5,①)
②-①:2x-2y=-1-5,③
2(③):x-y=-3.
方法总结:解题的关键是观察两个方程相同未知数的系数关系,利用加减消元法求解.
探究点三:构造二元一次方程组求值
已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n的值.
解析:根据同类项的概念,可列出含字母m和n的方程组,从而求出m和n.
解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以3m-2n-5=1.②(m-n+1=n-1,①)
整理,得3m-2n-6=0.④(m-2n+2=0,③)
④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以当n=3(m=4,)时,xm-n+1y与-2xn-1y3m-2n-5是同类项.
方法总结:解这类题,就是根据同类项的定义,利用相同字母的指数分别相等,列方程组求字母的值.
三、板书设计
用加减法解二元一次方程组的步骤:
①变形,使某个未知数的系数绝对值相等;
②加减消元;
③解一元一次方程;
④求另一个未知数的值,得方程组的解.
进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.选择恰当的方法解二元一次方程组,培养学生的观察、分析问题的能力.
北师大版初中数学八年级上册5.5 应用二元一次方程组——里程碑上的数优秀教案word
北师大版初中数学八年级上册5.5 应用二元一次方程组——里程碑上的数优秀教案word,北师大版,八上数学,教案,莲山课件.